A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms

O. Johannsen, Katrin Honauer, Bastian Goldlücke, A. Alperovich, F. Battisti, Yunsu Bok, Michele Brizzi, M. Carli, Gyeongmin Choe, M. Diebold, M. Gutsche, Hae-Gon Jeon, In-So Kweon, Jaesik Park, Jinsun Park, H. Schilling, Hao Sheng, Lipeng Si, Michael Strecke, Antonin Sulc, Yu-Wing Tai, Qing Wang, Tingxian Wang, S. Wanner, Z. Xiong, Jingyi Yu, Shuo Zhang, Hao Zhu
{"title":"A Taxonomy and Evaluation of Dense Light Field Depth Estimation Algorithms","authors":"O. Johannsen, Katrin Honauer, Bastian Goldlücke, A. Alperovich, F. Battisti, Yunsu Bok, Michele Brizzi, M. Carli, Gyeongmin Choe, M. Diebold, M. Gutsche, Hae-Gon Jeon, In-So Kweon, Jaesik Park, Jinsun Park, H. Schilling, Hao Sheng, Lipeng Si, Michael Strecke, Antonin Sulc, Yu-Wing Tai, Qing Wang, Tingxian Wang, S. Wanner, Z. Xiong, Jingyi Yu, Shuo Zhang, Hao Zhu","doi":"10.1109/CVPRW.2017.226","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-ofthe- art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"70 1","pages":"1795-1812"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

Abstract

This paper presents the results of the depth estimation challenge for dense light fields, which took place at the second workshop on Light Fields for Computer Vision (LF4CV) in conjunction with CVPR 2017. The challenge consisted of submission to a recent benchmark [7], which allows a thorough performance analysis. While individual results are readily available on the benchmark web page http://www.lightfield-analysis.net, we take this opportunity to give a detailed overview of the current participants. Based on the algorithms submitted to our challenge, we develop a taxonomy of light field disparity estimation algorithms and give a report on the current state-ofthe- art. In addition, we include more comparative metrics, and discuss the relative strengths and weaknesses of the algorithms. Thus, we obtain a snapshot of where light field algorithm development stands at the moment and identify aspects with potential for further improvement.
密集光场深度估计算法的分类与评价
本文介绍了在与CVPR 2017联合举行的第二届计算机视觉光场研讨会(LF4CV)上进行的密集光场深度估计挑战的结果。挑战包括提交到最近的基准测试[7],它允许进行彻底的性能分析。虽然在基准测试网页http://www.lightfield-analysis.net上可以很容易地获得个人结果,但我们借此机会对当前参与者进行详细概述。基于提交的算法,我们发展了一种光场视差估计算法的分类,并对当前的技术状况进行了报告。此外,我们包括更多的比较指标,并讨论了算法的相对优势和劣势。因此,我们获得了光场算法发展现状的快照,并确定了有进一步改进潜力的方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信