{"title":"Pseudo Zernike moments based approach for text detection and localisation from lecture videos","authors":"Belkacem Soundes, Guezouli Larbi, Zidat Samir","doi":"10.1504/IJCSE.2016.10011674","DOIUrl":null,"url":null,"abstract":"Scene text presents challenging characteristics mainly related to acquisition circumstances and environmental changes resulting in low quality videos. In this paper, we present a scene text detection algorithm based on pseudo Zernike moments (PZMs) and stroke features from low resolution lecture videos. Algorithm mainly consists of three steps: slide detection, text detection and segmentation and non-text filtering. In lecture videos, slide region is a key object carrying almost all important information; hence slide region has to be extracted and segmented from other scene objects considered as background for later processing. Slide region detection and segmentation is done by applying pseudo Zernike moment's based on RGB frames. Text detection and extraction is performed using PZMs segmentation over V channel of HSV colour space, and then stroke feature is used to filter out non-text region and to remove false positives. The algorithm is robust to illumination, low resolution and uneven luminance from compressed videos. Effectiveness of PZM description leads to very few false positives comparing to other approached. Moreover resulting images can be used directly by OCR engines and no more processing is needed.","PeriodicalId":47380,"journal":{"name":"International Journal of Computational Science and Engineering","volume":"40 1","pages":"274-283"},"PeriodicalIF":1.4000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJCSE.2016.10011674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 1
Abstract
Scene text presents challenging characteristics mainly related to acquisition circumstances and environmental changes resulting in low quality videos. In this paper, we present a scene text detection algorithm based on pseudo Zernike moments (PZMs) and stroke features from low resolution lecture videos. Algorithm mainly consists of three steps: slide detection, text detection and segmentation and non-text filtering. In lecture videos, slide region is a key object carrying almost all important information; hence slide region has to be extracted and segmented from other scene objects considered as background for later processing. Slide region detection and segmentation is done by applying pseudo Zernike moment's based on RGB frames. Text detection and extraction is performed using PZMs segmentation over V channel of HSV colour space, and then stroke feature is used to filter out non-text region and to remove false positives. The algorithm is robust to illumination, low resolution and uneven luminance from compressed videos. Effectiveness of PZM description leads to very few false positives comparing to other approached. Moreover resulting images can be used directly by OCR engines and no more processing is needed.
期刊介绍:
Computational science and engineering is an emerging and promising discipline in shaping future research and development activities in both academia and industry, in fields ranging from engineering, science, finance, and economics, to arts and humanities. New challenges arise in the modelling of complex systems, sophisticated algorithms, advanced scientific and engineering computing and associated (multidisciplinary) problem-solving environments. Because the solution of large and complex problems must cope with tight timing schedules, powerful algorithms and computational techniques, are inevitable. IJCSE addresses the state of the art of all aspects of computational science and engineering with emphasis on computational methods and techniques for science and engineering applications.