Statistical Inference on a Black-Scholes Model with Jumps. Application in Hydrology

IF 0.3 Q4 MATHEMATICS
J. Césars, S. P. Nuiro, J. Vaillant
{"title":"Statistical Inference on a Black-Scholes Model with Jumps. Application in Hydrology","authors":"J. Césars, S. P. Nuiro, J. Vaillant","doi":"10.3844/JMSSP.2019.196.200","DOIUrl":null,"url":null,"abstract":"We consider a Stochastic Differential Equation (SDE) driven by a Wiener process and a Poisson measure. This latter measure is associated with a sequence of identically distributed jump amplitudes. Properties of the SDE solution are presented with respect to the associated Wiener and Poisson processes. An algorithm is provided allowing exact numerical simulations of such SDE and implementable within R environment. Statistical inference tools are presented and applied to hydrology data.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"7 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/JMSSP.2019.196.200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We consider a Stochastic Differential Equation (SDE) driven by a Wiener process and a Poisson measure. This latter measure is associated with a sequence of identically distributed jump amplitudes. Properties of the SDE solution are presented with respect to the associated Wiener and Poisson processes. An algorithm is provided allowing exact numerical simulations of such SDE and implementable within R environment. Statistical inference tools are presented and applied to hydrology data.
具有跳跃的Black-Scholes模型的统计推断。在水文学中的应用
我们考虑一个由维纳过程和泊松测度驱动的随机微分方程。后一种测量方法与一系列相同分布的跳跃幅度相关联。关于相关的维纳过程和泊松过程,给出了SDE解的性质。提供了一种算法,可以精确地对这种SDE进行数值模拟,并在R环境中实现。提出了统计推断工具,并将其应用于水文数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信