Coxeter Invariants for Non-negative Unit Forms of Dynkin Type 𝔸r

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Jesús Arturo Jiménez González
{"title":"Coxeter Invariants for Non-negative Unit Forms of Dynkin Type 𝔸r","authors":"Jesús Arturo Jiménez González","doi":"10.3233/fi-222109","DOIUrl":null,"url":null,"abstract":"Two integral quadratic unit forms are called strongly Gram congruent if their upper triangular Gram matrices are ℤ-congruent. The paper gives a combinatorial strong Gram invariant for those unit forms that are non-negative of Dynkin type 𝔸r (for r ≥ 1), within the framework introduced in [Fundamenta Informaticae 184(1):49–82, 2021], and uses it to determine all corresponding Coxeter polynomials and (reduced) Coxeter numbers.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":"41 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/fi-222109","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 5

Abstract

Two integral quadratic unit forms are called strongly Gram congruent if their upper triangular Gram matrices are ℤ-congruent. The paper gives a combinatorial strong Gram invariant for those unit forms that are non-negative of Dynkin type 𝔸r (for r ≥ 1), within the framework introduced in [Fundamenta Informaticae 184(1):49–82, 2021], and uses it to determine all corresponding Coxeter polynomials and (reduced) Coxeter numbers.
Dynkin型非负单位形式的Coxeter不变量𝔸r
如果两个积分二次单位形式的上三角格拉姆矩阵是0 -同余的,则称为强格拉姆同余。本文在[Fundamenta informatice 184(1):49 - 82,2021]中引入的框架内,给出了Dynkin型的非负单位形式𝔸r(对于r≥1)的组合强Gram不变量,并用它来确定所有相应的Coxeter多项式和(约简)Coxeter数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Fundamenta Informaticae
Fundamenta Informaticae 工程技术-计算机:软件工程
CiteScore
2.00
自引率
0.00%
发文量
61
审稿时长
9.8 months
期刊介绍: Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing: solutions by mathematical methods of problems emerging in computer science solutions of mathematical problems inspired by computer science. Topics of interest include (but are not restricted to): theory of computing, complexity theory, algorithms and data structures, computational aspects of combinatorics and graph theory, programming language theory, theoretical aspects of programming languages, computer-aided verification, computer science logic, database theory, logic programming, automated deduction, formal languages and automata theory, concurrency and distributed computing, cryptography and security, theoretical issues in artificial intelligence, machine learning, pattern recognition, algorithmic game theory, bioinformatics and computational biology, quantum computing, probabilistic methods, algebraic and categorical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信