Autopilot spatially-adaptive active contour parameterization for medical image segmentation

Eleftheria A. Mylona, M. Savelonas, D. Maroulis, A. Skodras
{"title":"Autopilot spatially-adaptive active contour parameterization for medical image segmentation","authors":"Eleftheria A. Mylona, M. Savelonas, D. Maroulis, A. Skodras","doi":"10.1109/CBMS.2013.6627800","DOIUrl":null,"url":null,"abstract":"In this work, a novel framework for automated, spatially-adaptive adjustment of active contour regularization and data fidelity parameters is proposed and applied for medical image segmentation. The proposed framework is tailored upon the isomorphism observed between these parameters and the eigenvalues of diffusion tensors. Since such eigenvalues reflect the diffusivity of edge regions, we embed this information in regularization and data fidelity parameters by means of entropy-based, spatially-adaptive `heatmaps'. The latter are able to repel an active contour from randomly directed edge regions and guide it towards structured ones. Experiments are conducted on endoscopic as well as mammographic images. The segmentation results demonstrate that the proposed framework bypasses iterations dedicated to false local minima associated with noise, artifacts and inhomogeneities, speeding up contour convergence, whereas it maintains a high segmentation quality.","PeriodicalId":20519,"journal":{"name":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","volume":"70 1","pages":"268-272"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 26th IEEE International Symposium on Computer-Based Medical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS.2013.6627800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, a novel framework for automated, spatially-adaptive adjustment of active contour regularization and data fidelity parameters is proposed and applied for medical image segmentation. The proposed framework is tailored upon the isomorphism observed between these parameters and the eigenvalues of diffusion tensors. Since such eigenvalues reflect the diffusivity of edge regions, we embed this information in regularization and data fidelity parameters by means of entropy-based, spatially-adaptive `heatmaps'. The latter are able to repel an active contour from randomly directed edge regions and guide it towards structured ones. Experiments are conducted on endoscopic as well as mammographic images. The segmentation results demonstrate that the proposed framework bypasses iterations dedicated to false local minima associated with noise, artifacts and inhomogeneities, speeding up contour convergence, whereas it maintains a high segmentation quality.
用于医学图像分割的自动驾驶空间自适应主动轮廓参数化
在这项工作中,提出了一种新的框架,用于主动轮廓正则化和数据保真度参数的自动、空间自适应调整,并将其应用于医学图像分割。所提出的框架是根据这些参数与扩散张量的特征值之间的同构性进行调整的。由于这些特征值反映了边缘区域的扩散性,我们通过基于熵的空间自适应“热图”将这些信息嵌入到正则化和数据保真度参数中。后者能够从随机定向边缘区域排斥活动轮廓,并将其引导到结构化边缘区域。实验是在内窥镜和乳房x线摄影图像上进行的。分割结果表明,该框架绕过了与噪声、伪影和不均匀性相关的虚假局部最小值的迭代,加快了轮廓收敛速度,同时保持了较高的分割质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信