Hybrid High-Performance Computing Algorithm for Gene Regulatory Network

D. Elsayad, Safawat Hamad, Howida A. Shedeed, M. Tolba
{"title":"Hybrid High-Performance Computing Algorithm for Gene Regulatory Network","authors":"D. Elsayad, Safawat Hamad, Howida A. Shedeed, M. Tolba","doi":"10.4018/IJSKD.2021010105","DOIUrl":null,"url":null,"abstract":"This paper presents a parallel algorithm for gene regulatory network construction, hereby referred to as H2pcGRN. The construction of gene regulatory network is a vital methodology for investigating the genes interactions' topological order, annotating the genes functionality and demonstrating the regulatory process. One of the approaches for gene regulatory network construction techniques is based on the component analysis method. The main drawbacks of component analysis-based algorithms are its intensive computations that consume time. Despite these drawbacks, this approach is widely applied to infer the regulatory network. Therefore, introducing parallel techniques is indispensable for gene regulatory network inference algorithms. H2pcGRN is a hybrid high performance-computing algorithm for gene regulatory network inference. The proposed algorithm is based on both the hybrid parallelism architecture and the generalized cannon's algorithm. A variety of gene datasets is used for H2pcGRN assessment and evaluation. The experimental results indicated that H2pcGRN achieved super-linear speedup, where its computational speedup reached 570 on 256 processing nodes.","PeriodicalId":13656,"journal":{"name":"Int. J. Sociotechnology Knowl. Dev.","volume":"161 1","pages":"52-64"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Sociotechnology Knowl. Dev.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJSKD.2021010105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a parallel algorithm for gene regulatory network construction, hereby referred to as H2pcGRN. The construction of gene regulatory network is a vital methodology for investigating the genes interactions' topological order, annotating the genes functionality and demonstrating the regulatory process. One of the approaches for gene regulatory network construction techniques is based on the component analysis method. The main drawbacks of component analysis-based algorithms are its intensive computations that consume time. Despite these drawbacks, this approach is widely applied to infer the regulatory network. Therefore, introducing parallel techniques is indispensable for gene regulatory network inference algorithms. H2pcGRN is a hybrid high performance-computing algorithm for gene regulatory network inference. The proposed algorithm is based on both the hybrid parallelism architecture and the generalized cannon's algorithm. A variety of gene datasets is used for H2pcGRN assessment and evaluation. The experimental results indicated that H2pcGRN achieved super-linear speedup, where its computational speedup reached 570 on 256 processing nodes.
基因调控网络的混合高性能计算算法
本文提出了一种用于基因调控网络构建的并行算法,以下简称H2pcGRN。基因调控网络的构建是研究基因相互作用拓扑秩序、解释基因功能和展示调控过程的重要方法。基于成分分析法的基因调控网络构建技术的途径之一。基于构件分析算法的主要缺点是计算量大,耗时长。尽管存在这些缺点,但这种方法被广泛应用于推断监管网络。因此,在基因调控网络推理算法中引入并行技术是必不可少的。H2pcGRN是一种用于基因调控网络推理的混合高性能计算算法。该算法基于混合并行结构和广义加农炮算法。多种基因数据集用于H2pcGRN的评估和评价。实验结果表明,H2pcGRN实现了超线性加速,256个处理节点上的计算加速达到570。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信