Optimal feedback control for a class of second-order evolution differential inclusions with Clarke’s subdifferential

IF 2.5 2区 数学 Q1 MATHEMATICS
Jun Chen, Zhenhai Liu, F. Lomovtsev, V. Obukhovskii
{"title":"Optimal feedback control for a class of second-order evolution differential inclusions with Clarke’s subdifferential","authors":"Jun Chen, Zhenhai Liu, F. Lomovtsev, V. Obukhovskii","doi":"10.23952/jnva.6.2022.5.08","DOIUrl":null,"url":null,"abstract":". The goal of this paper is to study optimal feedback control for a class of non-autonomous second-order evolution inclusions with Clarke’s subdifferential in a separable reflexive Banach space. We only assume that the second order evolution operator involved satisfies the strong continuity condition instead of the compactness, which was used in previous literature. By using the properties of multimaps and Clarke’s subdifferential, we assume some sufficient conditions to ensure the existence of feasible pairs of the feedback control systems. Furthermore, we also prove the existence of optimal control pairs","PeriodicalId":48488,"journal":{"name":"Journal of Nonlinear and Variational Analysis","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nonlinear and Variational Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.23952/jnva.6.2022.5.08","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

. The goal of this paper is to study optimal feedback control for a class of non-autonomous second-order evolution inclusions with Clarke’s subdifferential in a separable reflexive Banach space. We only assume that the second order evolution operator involved satisfies the strong continuity condition instead of the compactness, which was used in previous literature. By using the properties of multimaps and Clarke’s subdifferential, we assume some sufficient conditions to ensure the existence of feasible pairs of the feedback control systems. Furthermore, we also prove the existence of optimal control pairs
一类具有Clarke子微分的二阶演化微分包体的最优反馈控制
. 研究了可分离自反Banach空间中一类具有Clarke次微分的非自治二阶演化包体的最优反馈控制问题。我们只假设所涉及的二阶演化算子满足强连续性条件,而不像以往文献中那样满足紧性条件。利用多映射和Clarke子微分的性质,给出了反馈控制系统存在可行对的充分条件。进一步证明了最优控制对的存在性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
3.40%
发文量
10
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信