A RANGE FUNCTION APPROACH TO SHIFT-INVARIANT SPACES ON LOCALLY COMPACT ABELIAN GROUPS

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
R. A. Kamyabi Gol, R. R. Tousi, R. Raisi Tousi
{"title":"A RANGE FUNCTION APPROACH TO SHIFT-INVARIANT SPACES ON LOCALLY COMPACT ABELIAN GROUPS","authors":"R. A. Kamyabi Gol, R. R. Tousi, R. Raisi Tousi","doi":"10.1142/S021969131392001X","DOIUrl":null,"url":null,"abstract":"This paper develops several aspects of shift-invariant spaces on locally compact abelian groups. For a second countable locally compact abelian group G we prove a useful Hilbert space isomorphism, introduce range functions and give a characterization of shift-invariant subspaces of L2(G) in terms of range functions. Utilizing these functions, we generalize characterizations of frames and Riesz bases generated by shifts of a countable set of generators from L2(ℝn) to L2(G).","PeriodicalId":50282,"journal":{"name":"International Journal of Wavelets Multiresolution and Information Processing","volume":"44 1","pages":"49-59"},"PeriodicalIF":0.9000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wavelets Multiresolution and Information Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S021969131392001X","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 10

Abstract

This paper develops several aspects of shift-invariant spaces on locally compact abelian groups. For a second countable locally compact abelian group G we prove a useful Hilbert space isomorphism, introduce range functions and give a characterization of shift-invariant subspaces of L2(G) in terms of range functions. Utilizing these functions, we generalize characterizations of frames and Riesz bases generated by shifts of a countable set of generators from L2(ℝn) to L2(G).
局部紧阿贝尔群上平移不变空间的极差函数方法
研究了局部紧阿贝尔群上平移不变空间的几个方面。对于第二可数局部紧阿贝尔群G,我们证明了一个有用的Hilbert空间同构,引入了值域函数,给出了L2(G)的平移不变子空间用值域函数的刻画。利用这些函数,我们推广了由L2(n)到L2(G)的可数发生器集的移位所产生的坐标系和Riesz基的刻画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.60
自引率
7.10%
发文量
52
审稿时长
2.7 months
期刊介绍: International Journal of Wavelets, Multiresolution and Information Processing (hereafter referred to as IJWMIP) is a bi-monthly publication for theoretical and applied papers on the current state-of-the-art results of wavelet analysis, multiresolution and information processing. Papers related to the IJWMIP theme are especially solicited, including theories, methodologies, algorithms and emerging applications. Topics of interest of the IJWMIP include, but are not limited to: 1. Wavelets: Wavelets and operator theory Frame and applications Time-frequency analysis and applications Sparse representation and approximation Sampling theory and compressive sensing Wavelet based algorithms and applications 2. Multiresolution: Multiresolution analysis Multiscale approximation Multiresolution image processing and signal processing Multiresolution representations Deep learning and neural networks Machine learning theory, algorithms and applications High dimensional data analysis 3. Information Processing: Data sciences Big data and applications Information theory Information systems and technology Information security Information learning and processing Artificial intelligence and pattern recognition Image/signal processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信