Visual Surveillance using Deep Reinforcement Learning

Keong-Hun Choi, J. Ha
{"title":"Visual Surveillance using Deep Reinforcement Learning","authors":"Keong-Hun Choi, J. Ha","doi":"10.23919/ICCAS50221.2020.9268429","DOIUrl":null,"url":null,"abstract":"Visual surveillance aims a robust detection of foreground objects, and traditional algorithms usually use a background model image. A current is compared with the background model image. In this paper, we present a visual surveillance algorithm, which determines the parameters in Vibe using deep reinforcement learning. We apply DQN to determine three parameters in Vibe algorithm. We present a policy model which is composed of encoder and decoder type network. Experimental results shows the feasibility of the presented algorithm.","PeriodicalId":6732,"journal":{"name":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","volume":"18 1","pages":"289-291"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 20th International Conference on Control, Automation and Systems (ICCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ICCAS50221.2020.9268429","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Visual surveillance aims a robust detection of foreground objects, and traditional algorithms usually use a background model image. A current is compared with the background model image. In this paper, we present a visual surveillance algorithm, which determines the parameters in Vibe using deep reinforcement learning. We apply DQN to determine three parameters in Vibe algorithm. We present a policy model which is composed of encoder and decoder type network. Experimental results shows the feasibility of the presented algorithm.
使用深度强化学习的视觉监控
视觉监控的目标是鲁棒检测前景目标,传统的算法通常使用背景模型图像。将电流与背景模型图像进行比较。在本文中,我们提出了一种视觉监控算法,该算法使用深度强化学习来确定Vibe中的参数。我们应用DQN来确定Vibe算法中的三个参数。提出了一种由编码器和解码器网络组成的策略模型。实验结果表明了该算法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信