{"title":"Hydroisomerization probe of the catalytic and structural behavior of iron—rhodium particles supported on refractory oxide supports","authors":"Suzana M. da Silva, Jonathan Phillips","doi":"10.1016/0304-5102(94)87032-2","DOIUrl":null,"url":null,"abstract":"<div><p>In order to understand the role of metal—support interactions in determining the structure and catalytic chemistry of multimetallic catalysts, kinetic and calorimetric studies of FeRh particles supported on a number of refractory oxide supports were conducted. Kinetic studies (1-butene hydroisomerization) showed that selectivity and activity were influenced by a number of parameters, particularly support identity, but also reduction temperature, and time on stream. To explain the observed kinetics it is postulated: (i) catalysis takes place both at metal sites and at acid sites on the surface, and that the selectivity of each site type is very different, (ii) the presence of metal enhances the rate of reaction at the acid sites by providing hydrogen atoms via a spillover mechanism, (iii) the metal loses activity more rapidly than the acid sites and (iv) due to the relative strengths of iron and rhodium interactions with the support, rhodium is preferentially reduced. Microcalorimetric studies of the surface composition support the postulate that rhodium is preferentially reduced and found at the surface. In sum, this study clearly shows that the structural and hence catalytic behavior of refractory oxide supported FeRh is distinctly different than that observed for the same metals on a graphitic support, thus demonstrating the critical importance of metal—support interactions in determining the catalytic character of multimetallic particles.</p></div>","PeriodicalId":16567,"journal":{"name":"分子催化","volume":"94 1","pages":"Pages 97-116"},"PeriodicalIF":0.0000,"publicationDate":"1994-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0304-5102(94)87032-2","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"分子催化","FirstCategoryId":"1089","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0304510294870322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 10
Abstract
In order to understand the role of metal—support interactions in determining the structure and catalytic chemistry of multimetallic catalysts, kinetic and calorimetric studies of FeRh particles supported on a number of refractory oxide supports were conducted. Kinetic studies (1-butene hydroisomerization) showed that selectivity and activity were influenced by a number of parameters, particularly support identity, but also reduction temperature, and time on stream. To explain the observed kinetics it is postulated: (i) catalysis takes place both at metal sites and at acid sites on the surface, and that the selectivity of each site type is very different, (ii) the presence of metal enhances the rate of reaction at the acid sites by providing hydrogen atoms via a spillover mechanism, (iii) the metal loses activity more rapidly than the acid sites and (iv) due to the relative strengths of iron and rhodium interactions with the support, rhodium is preferentially reduced. Microcalorimetric studies of the surface composition support the postulate that rhodium is preferentially reduced and found at the surface. In sum, this study clearly shows that the structural and hence catalytic behavior of refractory oxide supported FeRh is distinctly different than that observed for the same metals on a graphitic support, thus demonstrating the critical importance of metal—support interactions in determining the catalytic character of multimetallic particles.
期刊介绍:
Journal of Molecular Catalysis (China) is a bimonthly journal, founded in 1987. It is a bimonthly journal, founded in 1987, sponsored by Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, under the supervision of Chinese Academy of Sciences, and published by Science Publishing House, which is a scholarly journal openly circulated both at home and abroad. The journal mainly reports the latest progress and research results on molecular catalysis. It contains academic papers, research briefs, research reports and progress reviews. The content focuses on coordination catalysis, enzyme catalysis, light-ribbed catalysis, stereochemistry in catalysis, catalytic reaction mechanism and kinetics, the study of catalyst surface states and the application of quantum chemistry in catalysis. We also provide contributions on the activation, deactivation and regeneration of homogeneous catalysts, solidified homogeneous catalysts and solidified enzyme catalysts in industrial catalytic processes, as well as on the optimisation and characterisation of catalysts for new catalytic processes.
The main target readers are scientists and postgraduates working in catalysis in research institutes, industrial and mining enterprises, as well as teachers and students of chemistry and chemical engineering departments in colleges and universities. Contributions from related professionals are welcome.