{"title":"Quantum Field Theory with Electric-Magnetic Duality and Spin-Mass Duality but Without Grand Unication and Supersymmetry","authors":"Rainer W. Kuhne","doi":"10.20944/PREPRINTS201806.0383.V1","DOIUrl":null,"url":null,"abstract":"Abstract: I present a generalization of quantum electrodynamics which includes Diracmagnetic monop oles and the Salam magnetic photon. This quantum electromagnetodynamics has many attractive features. (1) It explains the quantization of electric charge. (2) It describes symmetrized Maxwell equations. (3) It is manifestly covariant. (4) It describes local four-potentials. (5) It avoids the unphysicalDirac string. (6) It predicts a second kind of electromagnetic radiation which can be veried by a tabletop experiment. An eect of this radiation may have been observed by August Kundt in 1885. Furthermore I discuss a generalization of General Relativity which includes Cartan's torsion. I discuss the mathematical denition, concrete description, and physical meaning of Cartan's torsion. I argue that the electric-magnetic duality of quantum electromagnetodynamics is analogous to the spin-mass duality of Einstein-Cartan theory. A quantum version of this theory requires that the torsion tensor corresponds to a spin-3 boson called tordion which is shown to have a rest mass close to the Planck mass. Moreover I present an empirically satised fundamental equation of unied eld theory which includes the fundamental constants of electromagnetism and gravity. I conclude with the remark that the concepts presented here require neither Grand Unication nor supersymmetry.","PeriodicalId":7403,"journal":{"name":"African Review of Physics","volume":"41 1","pages":"0020"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"African Review of Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/PREPRINTS201806.0383.V1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract: I present a generalization of quantum electrodynamics which includes Diracmagnetic monop oles and the Salam magnetic photon. This quantum electromagnetodynamics has many attractive features. (1) It explains the quantization of electric charge. (2) It describes symmetrized Maxwell equations. (3) It is manifestly covariant. (4) It describes local four-potentials. (5) It avoids the unphysicalDirac string. (6) It predicts a second kind of electromagnetic radiation which can be veried by a tabletop experiment. An eect of this radiation may have been observed by August Kundt in 1885. Furthermore I discuss a generalization of General Relativity which includes Cartan's torsion. I discuss the mathematical denition, concrete description, and physical meaning of Cartan's torsion. I argue that the electric-magnetic duality of quantum electromagnetodynamics is analogous to the spin-mass duality of Einstein-Cartan theory. A quantum version of this theory requires that the torsion tensor corresponds to a spin-3 boson called tordion which is shown to have a rest mass close to the Planck mass. Moreover I present an empirically satised fundamental equation of unied eld theory which includes the fundamental constants of electromagnetism and gravity. I conclude with the remark that the concepts presented here require neither Grand Unication nor supersymmetry.