Elements of Formal Probabilistic Mechanics

IF 0.3 Q4 MATHEMATICS
F. Kachapova, Ilias Kachapov
{"title":"Elements of Formal Probabilistic Mechanics","authors":"F. Kachapova, Ilias Kachapov","doi":"10.3844/jmssp.2022.16.26","DOIUrl":null,"url":null,"abstract":"Corresponding Author: Farida Kachapova Department of Mathematical Sciences, Auckland University of Technology, New Zealand E-mail: farida.kachapova@aut.ac.nz Abstract: In this study model of particle motion on a three-dimensional lattice is created using discrete random walk with small steps. A probability space of the particle trajectories is rigorously constructed. Unlike deterministic approach in classical mechanics, here probabilistic properties of particle movement are used to formally derive analogues of Newton’s first and second laws of motion. Similar probabilistic models can potentially be applied to justify laws of thermodynamics in a consistent manner.","PeriodicalId":41981,"journal":{"name":"Jordan Journal of Mathematics and Statistics","volume":"26 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jordan Journal of Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jmssp.2022.16.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Corresponding Author: Farida Kachapova Department of Mathematical Sciences, Auckland University of Technology, New Zealand E-mail: farida.kachapova@aut.ac.nz Abstract: In this study model of particle motion on a three-dimensional lattice is created using discrete random walk with small steps. A probability space of the particle trajectories is rigorously constructed. Unlike deterministic approach in classical mechanics, here probabilistic properties of particle movement are used to formally derive analogues of Newton’s first and second laws of motion. Similar probabilistic models can potentially be applied to justify laws of thermodynamics in a consistent manner.
形式概率力学的要素
摘要:在本研究中,采用小步离散随机漫步的方法建立了粒子在三维晶格上的运动模型。严格构造了粒子轨迹的概率空间。与经典力学中的确定性方法不同,这里使用粒子运动的概率性质来正式推导牛顿第一和第二运动定律的类似物。类似的概率模型可以潜在地应用于以一致的方式证明热力学定律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
33.30%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信