Physiochemical and Electrochemical Properties of Lanthanum Strontium Cobalt Ferum–Copper (II) Oxide Prepared via Solid State Reaction

IF 1.2 Q3 MULTIDISCIPLINARY SCIENCES
Ahmad Fuzamy Mohd Abdul Fatah, M. N. Murat, Noorashrina A. Hamid
{"title":"Physiochemical and Electrochemical Properties of Lanthanum Strontium Cobalt Ferum–Copper (II) Oxide Prepared via Solid State Reaction","authors":"Ahmad Fuzamy Mohd Abdul Fatah, M. N. Murat, Noorashrina A. Hamid","doi":"10.21315/jps2022.33.3.7","DOIUrl":null,"url":null,"abstract":"Lanthanum strontium cobalt ferum (LSCF) with addition of copper oxide (CuO) can serve as an alternate cathode material in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) due to its strong catalytic activity for oxygen reduction process at intermediate temperatures and great chemical compatibility. This study was done to determine the viability of LSCF–CuO composite as a material for the IT-SOFC cathode. The cathode powder was synthesised using the conventional solid-state process at intermediate temperatures range (600ºC–900ºC). The thermogravimetric analysis demonstrated that when LSCF was calcined at temperatures over 600ºC, the weight loss curve flattened. In the meantime, x-ray diffraction revealed that the perovskite structure of LSCF-CuO was completely formed after calcined at 800ºC. Moreover, the Brunauer– Emmett–Teller (BET) and scanning electron microscope investigations demonstrated that as the calcination temperature rose, the LSCF–CuO particles tended to grow. The electrochemical impedance spectroscopy investigation revealed polarisation resistance of samples calcined at 800ºC (0.41 Ωcm2) was significantly lower than that of samples calcined at 600ºC (29.57 Ωcm2). Judging from chemical, physical and electrochemical properties, it is evidence that LSCF-CuO prepared via simple solid-state reaction has a potential to be used as cathode material for IT-SOFC.","PeriodicalId":16757,"journal":{"name":"Journal of Physical Science","volume":"29 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physical Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21315/jps2022.33.3.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Lanthanum strontium cobalt ferum (LSCF) with addition of copper oxide (CuO) can serve as an alternate cathode material in Intermediate Temperature Solid Oxide Fuel Cell (IT-SOFC) due to its strong catalytic activity for oxygen reduction process at intermediate temperatures and great chemical compatibility. This study was done to determine the viability of LSCF–CuO composite as a material for the IT-SOFC cathode. The cathode powder was synthesised using the conventional solid-state process at intermediate temperatures range (600ºC–900ºC). The thermogravimetric analysis demonstrated that when LSCF was calcined at temperatures over 600ºC, the weight loss curve flattened. In the meantime, x-ray diffraction revealed that the perovskite structure of LSCF-CuO was completely formed after calcined at 800ºC. Moreover, the Brunauer– Emmett–Teller (BET) and scanning electron microscope investigations demonstrated that as the calcination temperature rose, the LSCF–CuO particles tended to grow. The electrochemical impedance spectroscopy investigation revealed polarisation resistance of samples calcined at 800ºC (0.41 Ωcm2) was significantly lower than that of samples calcined at 600ºC (29.57 Ωcm2). Judging from chemical, physical and electrochemical properties, it is evidence that LSCF-CuO prepared via simple solid-state reaction has a potential to be used as cathode material for IT-SOFC.
固相反应制备镧锶钴铁铜氧化物的理化和电化学性能
镧锶钴ferum (LSCF)添加氧化铜(CuO)可作为中温固体氧化物燃料电池(IT-SOFC)的替代正极材料,因为它具有较强的中温氧还原催化活性和良好的化学相容性。本研究是为了确定LSCF-CuO复合材料作为IT-SOFC阴极材料的可行性。阴极粉末采用传统的固态工艺,在中间温度范围(600℃- 900℃)下合成。热重分析表明,当LSCF在600℃以上煅烧时,失重曲线趋于平缓。同时,x射线衍射结果表明,LSCF-CuO在800℃煅烧后钙钛矿结构完全形成。此外,Brunauer - emmet - teller (BET)和扫描电镜研究表明,随着煅烧温度的升高,LSCF-CuO颗粒有生长的趋势。电化学阻抗谱研究表明,800℃煅烧样品的极化电阻(0.41 Ωcm2)明显低于600℃煅烧样品的极化电阻(29.57 Ωcm2)。从化学、物理和电化学性能来看,通过简单固相反应制备的LSCF-CuO具有作为it - sofc正极材料的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Physical Science
Journal of Physical Science Physics and Astronomy-Physics and Astronomy (all)
CiteScore
1.70
自引率
0.00%
发文量
19
期刊介绍: The aim of the journal is to disseminate latest scientific ideas and findings in the field of physical sciences among scientists in Malaysia and international regions. This journal is devoted to the publication of articles dealing with research works in Chemistry, Physics and Engineering. Review articles will also be considered. Manuscripts must be of scientific value and will be submitted to independent referees for review. Contributions must be written in English and must not have been published elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信