{"title":"Hierarchical clustering with deep Q-learning","authors":"Richard Forster, A. Fulop","doi":"10.2478/ausi-2018-0006","DOIUrl":null,"url":null,"abstract":"Abstract Following up on our previous study on applying hierarchical clustering algorithms to high energy particle physics, this paper explores the possibilities to use deep learning to generate models capable of processing the clusterization themselves. The technique chosen for training is reinforcement learning, that allows the system to evolve based on interactions between the model and the underlying graph. The result is a model, that by learning on a modest dataset of 10, 000 nodes during 70 epochs can reach 83, 77% precision for hierarchical and 86, 33% for high energy jet physics datasets in predicting the appropriate clusters.","PeriodicalId":41480,"journal":{"name":"Acta Universitatis Sapientiae Informatica","volume":"24 1","pages":"109 - 86"},"PeriodicalIF":0.3000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Universitatis Sapientiae Informatica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausi-2018-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Following up on our previous study on applying hierarchical clustering algorithms to high energy particle physics, this paper explores the possibilities to use deep learning to generate models capable of processing the clusterization themselves. The technique chosen for training is reinforcement learning, that allows the system to evolve based on interactions between the model and the underlying graph. The result is a model, that by learning on a modest dataset of 10, 000 nodes during 70 epochs can reach 83, 77% precision for hierarchical and 86, 33% for high energy jet physics datasets in predicting the appropriate clusters.