Lp Row Sampling by Lewis Weights

Michael B. Cohen, Richard Peng
{"title":"Lp Row Sampling by Lewis Weights","authors":"Michael B. Cohen, Richard Peng","doi":"10.1145/2746539.2746567","DOIUrl":null,"url":null,"abstract":"We give a simple algorithm to efficiently sample the rows of a matrix while preserving the p-norms of its product with vectors. Given an n * d matrix A, we find with high probability and in input sparsity time an A' consisting of about d log d rescaled rows of A such that |Ax|1 is close to |A'x|1 for all vectors x. We also show similar results for all Lp that give nearly optimal sample bounds in input sparsity time. Our results are based on sampling by \"Lewis weights\", which can be viewed as statistical leverage scores of a reweighted matrix. We also give an elementary proof of the guarantees of this sampling process for L1.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

We give a simple algorithm to efficiently sample the rows of a matrix while preserving the p-norms of its product with vectors. Given an n * d matrix A, we find with high probability and in input sparsity time an A' consisting of about d log d rescaled rows of A such that |Ax|1 is close to |A'x|1 for all vectors x. We also show similar results for all Lp that give nearly optimal sample bounds in input sparsity time. Our results are based on sampling by "Lewis weights", which can be viewed as statistical leverage scores of a reweighted matrix. We also give an elementary proof of the guarantees of this sampling process for L1.
用Lewis权值进行Lp行抽样
我们给出了一个简单的算法来有效地采样矩阵的行,同时保持其与向量乘积的p范数。给定一个n * d矩阵A,我们在输入稀疏时间内高概率地发现A'由大约d log d重新缩放的A行组成,使得对所有向量x来说|Ax|1都接近|A'x|1。我们也展示了所有Lp的类似结果,在输入稀疏时间内给出了几乎最优的样本边界。我们的结果是基于“刘易斯权重”的抽样,这可以看作是一个重新加权矩阵的统计杠杆分数。对于L1,我们也给出了这个抽样过程的保证的初等证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信