Tadashi Kimura, M. Kubota, Tetsuya Taguchi, N. Suzuki, A. Hattori, K. Marumo
{"title":"Evaluation of First-Ray Mobility in Patients with Hallux Valgus Using Weight-Bearing CT and a 3-D Analysis System: A Comparison with Normal Feet","authors":"Tadashi Kimura, M. Kubota, Tetsuya Taguchi, N. Suzuki, A. Hattori, K. Marumo","doi":"10.2106/JBJS.16.00542","DOIUrl":null,"url":null,"abstract":"Background: Some physicians report that patients with hallux valgus have hypermobility at the tarsometatarsal (TMT) joint of the first ray and 3-dimensional (3-D) deformity. With use of non-weight-bearing and weight-bearing computed tomography (CT), we evaluated the 3-D mobility of each joint of the first ray in feet with hallux valgus compared with normal feet. Methods: Ten feet of 10 patients with hallux valgus and 10 feet of 10 healthy volunteers with no foot disorders were examined. All participants were women. Weight-bearing (a load equivalent to body weight) and non-weight-bearing CT scans were made with use of a device that we developed. Orthogonal coordinate axes were set and a 3-D model was reconstructed. Each joint of the first ray was aligned with the respective proximal bone, and 3-D displacement of the distal bone relative to the proximal bone under loading was quantified. Results: At the talonavicular joint, significantly greater dorsiflexion of the navicular relative to the talus was observed in the hallux valgus group compared with the control group. At the medial cuneonavicular joint, the hallux valgus group showed significantly greater eversion and abduction of the medial cuneiform relative to the navicular. At the first TMT joint, the hallux valgus group showed significantly greater dorsiflexion, inversion, and adduction of the first metatarsal relative to the medial cuneiform. At the first metatarsophalangeal joint, the hallux valgus group showed significantly greater eversion and abduction of the first proximal phalanx relative to the first metatarsal (all p < 0.05). Conclusions: The results of this study suggest that loading of the foot causes significant 3-D displacement not only at the TMT joint but also at the other joints of the first ray. There is increased mobility in the first ray in patients who have hallux valgus.","PeriodicalId":22579,"journal":{"name":"The Journal of Bone and Joint Surgery","volume":"48 1","pages":"247–255"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"119","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Bone and Joint Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2106/JBJS.16.00542","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 119
Abstract
Background: Some physicians report that patients with hallux valgus have hypermobility at the tarsometatarsal (TMT) joint of the first ray and 3-dimensional (3-D) deformity. With use of non-weight-bearing and weight-bearing computed tomography (CT), we evaluated the 3-D mobility of each joint of the first ray in feet with hallux valgus compared with normal feet. Methods: Ten feet of 10 patients with hallux valgus and 10 feet of 10 healthy volunteers with no foot disorders were examined. All participants were women. Weight-bearing (a load equivalent to body weight) and non-weight-bearing CT scans were made with use of a device that we developed. Orthogonal coordinate axes were set and a 3-D model was reconstructed. Each joint of the first ray was aligned with the respective proximal bone, and 3-D displacement of the distal bone relative to the proximal bone under loading was quantified. Results: At the talonavicular joint, significantly greater dorsiflexion of the navicular relative to the talus was observed in the hallux valgus group compared with the control group. At the medial cuneonavicular joint, the hallux valgus group showed significantly greater eversion and abduction of the medial cuneiform relative to the navicular. At the first TMT joint, the hallux valgus group showed significantly greater dorsiflexion, inversion, and adduction of the first metatarsal relative to the medial cuneiform. At the first metatarsophalangeal joint, the hallux valgus group showed significantly greater eversion and abduction of the first proximal phalanx relative to the first metatarsal (all p < 0.05). Conclusions: The results of this study suggest that loading of the foot causes significant 3-D displacement not only at the TMT joint but also at the other joints of the first ray. There is increased mobility in the first ray in patients who have hallux valgus.