Laboratory Tests and Well Rate Models of Crushed Micro-Proppants to Improve Conductivity of Hydraulic Microfractures

Ya Tian, Fu-jian Zhou, M. Aljawad, R. Weijermars, Mingjiang Wu, Ben Li
{"title":"Laboratory Tests and Well Rate Models of Crushed Micro-Proppants to Improve Conductivity of Hydraulic Microfractures","authors":"Ya Tian, Fu-jian Zhou, M. Aljawad, R. Weijermars, Mingjiang Wu, Ben Li","doi":"10.2523/iptc-22209-ms","DOIUrl":null,"url":null,"abstract":"\n This study proposes an innovative crushing rate evaluation method for micro-proppants by analyzing hydraulic crushing and steel crushing rates. The effectiveness of using micro-proppants to increase the drainage area of the micro-fractures network was also proved. Our results show that for micro-proppants, there occur two types of crushing evolution during the fracturing process. Under a load of 70 MPa, the hydraulic crushing rate is about 20%, while the steel crushing rate is more than 60%. The critical closure stress of micro-proppants is 50 MPa, which can be used to depths up to 4,200 m. Numerical simulation results showed that due to the presence of micro-proppants, the effectively propped area of the fracture network would sharply increase, accompanied by an over 40% increase in the initial hydrocarbon production rate. The later, steady production period will show a sustained increase of more than 20%.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, February 22, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22209-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study proposes an innovative crushing rate evaluation method for micro-proppants by analyzing hydraulic crushing and steel crushing rates. The effectiveness of using micro-proppants to increase the drainage area of the micro-fractures network was also proved. Our results show that for micro-proppants, there occur two types of crushing evolution during the fracturing process. Under a load of 70 MPa, the hydraulic crushing rate is about 20%, while the steel crushing rate is more than 60%. The critical closure stress of micro-proppants is 50 MPa, which can be used to depths up to 4,200 m. Numerical simulation results showed that due to the presence of micro-proppants, the effectively propped area of the fracture network would sharply increase, accompanied by an over 40% increase in the initial hydrocarbon production rate. The later, steady production period will show a sustained increase of more than 20%.
破碎微支撑剂提高水力微裂缝导流能力的实验室试验和井速模型
通过分析水力破碎速率和钢材破碎速率,提出了一种新型的微支撑剂破碎速率评价方法。实验还证明了微支撑剂增加微裂缝网络排水面积的有效性。研究结果表明,对于微支撑剂,在压裂过程中会发生两种类型的破碎演化。在70 MPa载荷下,液压破碎率约为20%,而钢材破碎率在60%以上。微支撑剂的临界闭合应力为50 MPa,可应用深度达4200 m。数值模拟结果表明,由于微支撑剂的存在,裂缝网络的有效支撑面积急剧增加,初始油气产量提高40%以上。后期稳产期将呈现持续增长20%以上的态势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信