{"title":"On a Theorem of Cooper","authors":"S Sundar","doi":"10.53733/197","DOIUrl":null,"url":null,"abstract":"\n\n\nThe classical result of Cooper states that every pure strongly continuous semigroup of isometries $\\{V_t\\}_{t \\geq 0}$ on a Hilbert space is unitarily equivalent to the shift semigroup on $L^{2}([0,\\infty))$ with some multiplicity. The purpose of this note is to record a proof which has an algebraic flavour. The proof is based on the groupoid approach to semigroups of isometries initiated in [8]. We also indicate how our proof can be adapted to the Hilbert module setting and gives another proof of the main result of [3]. \n\n\n","PeriodicalId":30137,"journal":{"name":"New Zealand Journal of Mathematics","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Zealand Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53733/197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The classical result of Cooper states that every pure strongly continuous semigroup of isometries $\{V_t\}_{t \geq 0}$ on a Hilbert space is unitarily equivalent to the shift semigroup on $L^{2}([0,\infty))$ with some multiplicity. The purpose of this note is to record a proof which has an algebraic flavour. The proof is based on the groupoid approach to semigroups of isometries initiated in [8]. We also indicate how our proof can be adapted to the Hilbert module setting and gives another proof of the main result of [3].