The Content of Heavy Metals in Bottom Sediments of the Streams of the Sikhote-Alin Biosphere Reserve and the Streams Draining Mines of the Transit Zone of the Reserve
{"title":"The Content of Heavy Metals in Bottom Sediments of the Streams of the Sikhote-Alin Biosphere Reserve and the Streams Draining Mines of the Transit Zone of the Reserve","authors":"E.N. Chernova , E.V. Potikha , O.E. Nesterenko","doi":"10.1016/j.als.2015.05.002","DOIUrl":null,"url":null,"abstract":"<div><p>The concentrations of heavy metals in the bottom sediments (fraction <<!--> <!-->0.1<!--> <!-->mm) of streams of the Sikhote-Alin Nature Reserve and streams draining the mines of the protective and transit zone of the reserve, as well as in the tailing material, was examined. The background ranges of the Fe, Cu, Ni, Zn, and Cd concentrations in bottom sediments of streams of the eastern and central Sikhote-Alin were defined. The concentrations of Zn are elevated, and the concentrations of Cd are comparable in the bottom sediments of the reserve compared to the approximate permissible concentration in the soil. Elevated concentrations of Zn, Cu, Cd, Mn, Pb, and Ni compared to the background were found in the bottom sediments of the streams draining the territory of the tin mines. The concentrations of Zn and Cd in these bottom sediments exceeded the approximate permissible concentration. Elevated concentrations of Cu were observed in the bottom sediments of the streams, even at a distance of 10<!--> <!-->km from the mine. The content of metals in the bottom sediments in the stream draining the gold and silver mine did not exceed the approximate permissible concentration, whereas the concentrations of Cu, Mn and Pb were increased compared to the background. The surface layer of the sediments of the tin mines tailing ponds was enriched in Cu and Pb and starved of Cd, Ni, and Zn compared to the bottom sediments and the approximate permissible concentrations in the soil.</p></div>","PeriodicalId":100012,"journal":{"name":"Achievements in the Life Sciences","volume":"9 1","pages":"Pages 9-14"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.als.2015.05.002","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Achievements in the Life Sciences","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2078152015000322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The concentrations of heavy metals in the bottom sediments (fraction < 0.1 mm) of streams of the Sikhote-Alin Nature Reserve and streams draining the mines of the protective and transit zone of the reserve, as well as in the tailing material, was examined. The background ranges of the Fe, Cu, Ni, Zn, and Cd concentrations in bottom sediments of streams of the eastern and central Sikhote-Alin were defined. The concentrations of Zn are elevated, and the concentrations of Cd are comparable in the bottom sediments of the reserve compared to the approximate permissible concentration in the soil. Elevated concentrations of Zn, Cu, Cd, Mn, Pb, and Ni compared to the background were found in the bottom sediments of the streams draining the territory of the tin mines. The concentrations of Zn and Cd in these bottom sediments exceeded the approximate permissible concentration. Elevated concentrations of Cu were observed in the bottom sediments of the streams, even at a distance of 10 km from the mine. The content of metals in the bottom sediments in the stream draining the gold and silver mine did not exceed the approximate permissible concentration, whereas the concentrations of Cu, Mn and Pb were increased compared to the background. The surface layer of the sediments of the tin mines tailing ponds was enriched in Cu and Pb and starved of Cd, Ni, and Zn compared to the bottom sediments and the approximate permissible concentrations in the soil.