Robust Source Localization Exploiting Collaborative UAV Network

Shuimei Zhang, Ammar Ahmed, Yimin D. Zhang
{"title":"Robust Source Localization Exploiting Collaborative UAV Network","authors":"Shuimei Zhang, Ammar Ahmed, Yimin D. Zhang","doi":"10.1109/IEEECONF44664.2019.9049002","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust strategy to localize multiple ground sources exploiting a distributed unmanned aerial vehicle (UAV) network in the presence of impulse noise. We achieve robust source localization by using ℓ1-principal component analysis (ℓ1-PCA) based signal subspace estimation at each individual UAV. This approach significantly reduces the signal subspace perturbation compared to the conventional ℓ2-PCA based counterpart. The obtained robust signal subspace estimate is exploited to provide an improved estimate of the noise subspace, which is in turn utilized by the MUSIC algorithm to render coarse source localization at each individual UAV. The source localization information obtained at multiple UAVs is then fused by exploiting group sparsity using the re-weighted ℓ1 minimization. Simulation results demonstrate the effectiveness of the proposed approach.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"17 1","pages":"1437-1441"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we propose a robust strategy to localize multiple ground sources exploiting a distributed unmanned aerial vehicle (UAV) network in the presence of impulse noise. We achieve robust source localization by using ℓ1-principal component analysis (ℓ1-PCA) based signal subspace estimation at each individual UAV. This approach significantly reduces the signal subspace perturbation compared to the conventional ℓ2-PCA based counterpart. The obtained robust signal subspace estimate is exploited to provide an improved estimate of the noise subspace, which is in turn utilized by the MUSIC algorithm to render coarse source localization at each individual UAV. The source localization information obtained at multiple UAVs is then fused by exploiting group sparsity using the re-weighted ℓ1 minimization. Simulation results demonstrate the effectiveness of the proposed approach.
基于协同无人机网络的鲁棒源定位
在本文中,我们提出了一种鲁棒策略,利用分布式无人机(UAV)网络在存在脉冲噪声的情况下定位多个地源。我们在每个单独的无人机上使用基于l_1 -主成分分析(l_1 - pca)的信号子空间估计来实现鲁棒的源定位。与传统的基于l2 - pca的方法相比,该方法显著降低了信号子空间的扰动。利用获得的鲁棒信号子空间估计提供改进的噪声子空间估计,MUSIC算法利用噪声子空间估计在每个单独的无人机上呈现粗源定位。然后利用群稀疏性,利用重新加权的最小化算法,对多无人机上获得的源定位信息进行融合。仿真结果验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信