Permanent Removal of Condensate Banking in Tight Gas Reservoirs Using Thermochemicals

Amjed Hassan, M. Mahmoud, Abdulaziz Al-Majed, A. Al-Nakhli, M. Bataweel, Salaheldin Elktatany
{"title":"Permanent Removal of Condensate Banking in Tight Gas Reservoirs Using Thermochemicals","authors":"Amjed Hassan, M. Mahmoud, Abdulaziz Al-Majed, A. Al-Nakhli, M. Bataweel, Salaheldin Elktatany","doi":"10.2118/193609-MS","DOIUrl":null,"url":null,"abstract":"\n Condensate banking is a common problem in tight gas reservoirs because it diminishes the gas relative permeability and reduces the gas production rate significantly. CO2 injection is a common and very effective solution for condensate removal in tight gas reservoirs. The problem with CO2 injection is that it is a temporary solution and has to be repeated frequently in the field in addition to the supply limitations of CO2 in some areas. Also, the infrastructure required at the surface to handle CO2 injection makes it expensive to apply CO2 injection for condensate removal.\n In this paper, a new permanent technique is introduced to remove the condensate by using a thermochemical technique. Two chemicals will be used to generate in-situ CO2, nitrogen, steam, heat, and pressure. The reaction of the two chemicals downhole can be triggered either by the reservoir temperature, or a chemical activator. Two chemicals will start reacting and produce all the mentioned reaction products after 24 hrs. of mixing and injection. Also, the reaction can be triggered by a chemical activator and this will shorten the time of reaction. Coreflooding experiments were carried out using actual condensate samples from one of the gas fields. Tight sandstone cores of 0.9 mD permeability were used.\n The results of this study showed that, the thermochemical reaction products removed the condensate and reduced its viscosity due to the high temperature and the generated gases. The novelty in this paper is the creation of micro-fractures in the tight rock sample due to the in-situ generation of heat and pressure from the thermochemical reaction. These micro-fractures reduced the capillary forces that hold the condensate and enhanced its relative permeability. The creation of micro-fractures and in turn the reduction of the capillary forces can be considered as permanent condensate removal.","PeriodicalId":10983,"journal":{"name":"Day 1 Mon, April 08, 2019","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Mon, April 08, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/193609-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Condensate banking is a common problem in tight gas reservoirs because it diminishes the gas relative permeability and reduces the gas production rate significantly. CO2 injection is a common and very effective solution for condensate removal in tight gas reservoirs. The problem with CO2 injection is that it is a temporary solution and has to be repeated frequently in the field in addition to the supply limitations of CO2 in some areas. Also, the infrastructure required at the surface to handle CO2 injection makes it expensive to apply CO2 injection for condensate removal. In this paper, a new permanent technique is introduced to remove the condensate by using a thermochemical technique. Two chemicals will be used to generate in-situ CO2, nitrogen, steam, heat, and pressure. The reaction of the two chemicals downhole can be triggered either by the reservoir temperature, or a chemical activator. Two chemicals will start reacting and produce all the mentioned reaction products after 24 hrs. of mixing and injection. Also, the reaction can be triggered by a chemical activator and this will shorten the time of reaction. Coreflooding experiments were carried out using actual condensate samples from one of the gas fields. Tight sandstone cores of 0.9 mD permeability were used. The results of this study showed that, the thermochemical reaction products removed the condensate and reduced its viscosity due to the high temperature and the generated gases. The novelty in this paper is the creation of micro-fractures in the tight rock sample due to the in-situ generation of heat and pressure from the thermochemical reaction. These micro-fractures reduced the capillary forces that hold the condensate and enhanced its relative permeability. The creation of micro-fractures and in turn the reduction of the capillary forces can be considered as permanent condensate removal.
使用热化学剂永久去除致密气藏中的凝析气体
凝析层流是致密气藏的一个常见问题,因为它降低了天然气的相对渗透率,显著降低了天然气的产量。注CO2是致密气藏中常见且非常有效的解凝析液方法。二氧化碳注入的问题是,这是一个暂时的解决方案,除了一些地区的二氧化碳供应限制外,还必须在现场频繁重复。此外,地面处理二氧化碳注入所需的基础设施使得注入二氧化碳去除冷凝水的成本很高。本文介绍了一种利用热化学技术永久去除冷凝水的新技术。两种化学物质将用于产生原位二氧化碳、氮气、蒸汽、热量和压力。这两种化学物质在井下的反应可以由储层温度或化学活化剂触发。两种化学物质将在24小时后开始反应并产生上述所有反应产物。混合和注射。此外,该反应可由化学活化剂触发,这将缩短反应时间。利用某气田的实际凝析油样品进行了岩心驱替实验。采用渗透率为0.9 mD的致密砂岩岩心。研究结果表明,热化学反应产物由于高温和产生的气体,除去了凝结物,降低了凝结物的粘度。本文的新颖之处在于,由于热化学反应在原位产生热量和压力,在致密岩石样品中产生微裂缝。这些微裂缝降低了束缚凝析油的毛细管力,提高了其相对渗透率。微裂缝的产生和毛细力的减小可以被认为是永久的冷凝水去除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信