Reusing Information for Multifidelity Active Learning in Reliability-Based Design Optimization

A. Chaudhuri, A. Marques, Rémi R. Lam, K. Willcox
{"title":"Reusing Information for Multifidelity Active Learning in Reliability-Based Design Optimization","authors":"A. Chaudhuri, A. Marques, Rémi R. Lam, K. Willcox","doi":"10.2514/6.2019-1222","DOIUrl":null,"url":null,"abstract":"This paper develops a multifidelity method to reuse information from optimization history for adaptively refining surrogates in reliability-based design optimization (RBDO). RBDO can be computationally prohibitive due to numerous evaluations of the expensive high-fidelity models to estimate the probability of failure of the system in each optimization iteration. In this work, the high-fidelity model evaluations are replaced by cheaper-to-evaluate adaptively refined surrogate evaluations in the probability of failure estimation. The method reuses the past optimization iterations as an information source for devising an efficient multifidelity active learning (adaptive sampling) algorithm to refine the surrogates that best locate the failure boundary. We implement the information-reuse method using a multifidelity extension of efficient global reliability analysis that combines the expected feasibility function with a weighted lookahead information gain criterion to pick both the next sample location and information source used to evaluate the sample.","PeriodicalId":93407,"journal":{"name":"AIAA Atmospheric Flight Mechanics Conference 2019 : papers presented at the AIAA SciTech Forum and Exposition 2019, San Diego, California, USA, 7-11 January 2019. AIAA SciTech Forum and Exposition (2019 : San Diego, Calif.)","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIAA Atmospheric Flight Mechanics Conference 2019 : papers presented at the AIAA SciTech Forum and Exposition 2019, San Diego, California, USA, 7-11 January 2019. AIAA SciTech Forum and Exposition (2019 : San Diego, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2514/6.2019-1222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This paper develops a multifidelity method to reuse information from optimization history for adaptively refining surrogates in reliability-based design optimization (RBDO). RBDO can be computationally prohibitive due to numerous evaluations of the expensive high-fidelity models to estimate the probability of failure of the system in each optimization iteration. In this work, the high-fidelity model evaluations are replaced by cheaper-to-evaluate adaptively refined surrogate evaluations in the probability of failure estimation. The method reuses the past optimization iterations as an information source for devising an efficient multifidelity active learning (adaptive sampling) algorithm to refine the surrogates that best locate the failure boundary. We implement the information-reuse method using a multifidelity extension of efficient global reliability analysis that combines the expected feasibility function with a weighted lookahead information gain criterion to pick both the next sample location and information source used to evaluate the sample.
基于可靠性的设计优化中多保真主动学习的信息重用
在基于可靠性的设计优化中,提出了一种多保真度复用优化历史信息的方法,用于自适应优化替代方案。RBDO可能在计算上令人望而却步,因为在每次优化迭代中,需要对昂贵的高保真模型进行大量评估,以估计系统失败的概率。在此工作中,在故障概率估计中,高保真模型评估被评估成本更低的自适应改进替代评估所取代。该方法将过去的优化迭代作为信息源,设计了一种高效的多保真主动学习(自适应采样)算法,以优化定位故障边界的代理。我们使用高效全局可靠性分析的多保真度扩展来实现信息重用方法,该方法将期望可行性函数与加权前瞻信息增益准则相结合,以选择下一个样本位置和用于评估样本的信息源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信