On a solution of a nondegenerate boundary value problem of Carleman type for quasiharmonic functions in circular domains

IF 0.4 Q4 MATHEMATICS
K. .. Rasulov, T. I. Mikhalyova
{"title":"On a solution of a nondegenerate boundary value problem of Carleman type for quasiharmonic functions in circular domains","authors":"K. .. Rasulov, T. I. Mikhalyova","doi":"10.18500/1816-9791-2022-22-3-307-314","DOIUrl":null,"url":null,"abstract":". This paper considers a Carleman type boundary value problem for quasiharmonic functions. The boundary value problem is an informal model of a Carleman type differential problem for analytic functions of a complex variable.This paper presented a complex-analytical method for solving the problem under consideration in circular domains, which makes it possible to establish the instability of its solutions concerning small contour changes.","PeriodicalId":42789,"journal":{"name":"Izvestiya of Saratov University Mathematics Mechanics Informatics","volume":"37 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Izvestiya of Saratov University Mathematics Mechanics Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18500/1816-9791-2022-22-3-307-314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. This paper considers a Carleman type boundary value problem for quasiharmonic functions. The boundary value problem is an informal model of a Carleman type differential problem for analytic functions of a complex variable.This paper presented a complex-analytical method for solving the problem under consideration in circular domains, which makes it possible to establish the instability of its solutions concerning small contour changes.
圆域上拟调和函数的一类非退化Carleman型边值问题的解
. 研究一类拟调和函数的Carleman型边值问题。边值问题是复变解析函数的Carleman型微分问题的一个非正式模型。本文提出了一种在圆域上求解所考虑问题的复解析方法,从而可以建立其解在轮廓小变化时的不稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.70
自引率
0.00%
发文量
35
审稿时长
38 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信