Development of Radiographic Image Classification System for Weld Defect Identification using Deep Learning Technique

Distun Stephen, Dr.Lalu P.P
{"title":"Development of Radiographic Image Classification System for Weld Defect Identification using Deep Learning Technique","authors":"Distun Stephen, Dr.Lalu P.P","doi":"10.14299/IJSER.2021.05.01","DOIUrl":null,"url":null,"abstract":"Weld defect identification from radiographic images is a crucial task in the industry which requires trained human experts and enough specialists for performing timely inspections. This paper proposes a deep learning based approach to identify different weld defects automatically from radiographic images. To employ this a dataset containing 200 radiographic images labelled for four types of welding defect- gas pore, cluster porosity, crack and tungsten inclusion is developed. Then a Convolutional Neural Network model is designed and trained using this database.","PeriodicalId":14354,"journal":{"name":"International journal of scientific and engineering research","volume":"55 1","pages":"390-394"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of scientific and engineering research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14299/IJSER.2021.05.01","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Weld defect identification from radiographic images is a crucial task in the industry which requires trained human experts and enough specialists for performing timely inspections. This paper proposes a deep learning based approach to identify different weld defects automatically from radiographic images. To employ this a dataset containing 200 radiographic images labelled for four types of welding defect- gas pore, cluster porosity, crack and tungsten inclusion is developed. Then a Convolutional Neural Network model is designed and trained using this database.
基于深度学习技术的焊缝缺陷识别射线图像分类系统的开发
从射线图像中识别焊接缺陷是一项至关重要的任务,需要训练有素的专家和足够的专家进行及时的检查。提出了一种基于深度学习的焊缝缺陷自动识别方法。为此,开发了一个包含200张射线图像的数据集,标记了四种类型的焊接缺陷-气孔,簇气孔,裂纹和钨夹杂。然后利用该数据库设计并训练卷积神经网络模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信