{"title":"Novel fabrication technique of sub-10-nm-diameter Si nanowire FET using active oxidation","authors":"Y. Morita, S. Migita, W. Mizubayashi, H. Ota","doi":"10.1109/SNW.2010.5562588","DOIUrl":null,"url":null,"abstract":"We propose a novel technique for top-down fabrication of Si nanowire (SiNW) field effect transistors (FETs) using active oxidation of the Si channel. The width and line edge roughness of the SiNW channel were simultaneously reduced by active oxidation to 2.8 nm and 1.97 nm (3-σ), respectively. Device performance of ultra-thin SiNW FETs with atomically controlled nanowire-size and nanowire-shape is demonstrated.","PeriodicalId":6433,"journal":{"name":"2010 Silicon Nanoelectronics Workshop","volume":"45 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2010-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Silicon Nanoelectronics Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNW.2010.5562588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We propose a novel technique for top-down fabrication of Si nanowire (SiNW) field effect transistors (FETs) using active oxidation of the Si channel. The width and line edge roughness of the SiNW channel were simultaneously reduced by active oxidation to 2.8 nm and 1.97 nm (3-σ), respectively. Device performance of ultra-thin SiNW FETs with atomically controlled nanowire-size and nanowire-shape is demonstrated.