Physics-based modelling of vertical strained impact ionization MOSFET (VESIMOS)

I. Saad, C. B. Seng, H. M. Zuhir, B. Hazwani, N. Bolong
{"title":"Physics-based modelling of vertical strained impact ionization MOSFET (VESIMOS)","authors":"I. Saad, C. B. Seng, H. M. Zuhir, B. Hazwani, N. Bolong","doi":"10.1109/RSM.2015.7354971","DOIUrl":null,"url":null,"abstract":"CMOS device scaling faces several fundamental limits as it scaled beyond the sub-30nm regime. Non-scalability of the subthreshold slope (S) and adverse short channel effects degrading the current drivability and electron mobility of a MOSFET. An innovative device structure with appropriate device physics understanding is vitally needed for scaling the silicon MOSFET into nanometer regime. Underlying this problem is the subthreshold slope concept, which is a measure of switching abruptness in transistor. S is fundamentally limited at 60mV/decade by the drift-diffusion based transport in current CMOS technology. Impact ionization MOSFET (IMOS) that works on the principle of avalanche breakdown mechanism has become promising candidate to overcome this S value constraint. In this paper, we report for the first time an analytical modelling of vertical strained Impact Ionization MOSFET (VESIMOS). We derive the equations and their range of validity and compare the characteristic with TCAD simulations to give truthful interpretation and profound effects in evaluating the device operation for circuit application.","PeriodicalId":6667,"journal":{"name":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","volume":"43 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Regional Symposium on Micro and Nanoelectronics (RSM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSM.2015.7354971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

CMOS device scaling faces several fundamental limits as it scaled beyond the sub-30nm regime. Non-scalability of the subthreshold slope (S) and adverse short channel effects degrading the current drivability and electron mobility of a MOSFET. An innovative device structure with appropriate device physics understanding is vitally needed for scaling the silicon MOSFET into nanometer regime. Underlying this problem is the subthreshold slope concept, which is a measure of switching abruptness in transistor. S is fundamentally limited at 60mV/decade by the drift-diffusion based transport in current CMOS technology. Impact ionization MOSFET (IMOS) that works on the principle of avalanche breakdown mechanism has become promising candidate to overcome this S value constraint. In this paper, we report for the first time an analytical modelling of vertical strained Impact Ionization MOSFET (VESIMOS). We derive the equations and their range of validity and compare the characteristic with TCAD simulations to give truthful interpretation and profound effects in evaluating the device operation for circuit application.
垂直应变冲击电离MOSFET (VESIMOS)的物理建模
CMOS器件的缩放面临着几个基本的限制,因为它超出了低于30nm的范围。亚阈值斜率(S)的不可扩展性和不利的短通道效应降低了MOSFET的电流驱动性和电子迁移率。要将硅MOSFET扩展到纳米级,需要一种具有适当器件物理知识的创新器件结构。这个问题的基础是亚阈值斜率的概念,这是一个衡量晶体管开关的突然度。在目前的CMOS技术中,基于漂移扩散传输的S基本上被限制在60mV/decade。撞击电离MOSFET (IMOS)是一种工作在雪崩击穿机制上的器件,有望克服这一S值限制。本文首次报道了垂直应变冲击电离MOSFET (VESIMOS)的解析模型。我们推导出方程及其有效范围,并将其特性与TCAD仿真进行比较,以给出真实的解释和深刻的影响,以评估电路应用中的器件工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信