Jens Brandenburger, Fabian Krippendorff, Michael Krätzner, Michael Nörtersheuser, Xin Chen, A. Boss, K. Jonker, Nicolas Pipard, A. Ebner
{"title":"Quantifizierung der Klassifikationsleistung von Oberflächeninspektionssystemen in der Flachstahlproduktion","authors":"Jens Brandenburger, Fabian Krippendorff, Michael Krätzner, Michael Nörtersheuser, Xin Chen, A. Boss, K. Jonker, Nicolas Pipard, A. Ebner","doi":"10.1515/teme-2023-0035","DOIUrl":null,"url":null,"abstract":"Zusammenfassung In der modernen Stahlproduktion sind automatische Oberflächeninspektionssysteme (OIS) zur Detektion und Klassifikation von Oberflächenfehlern weit verbreitet und ihre Ergebnisse haben stark an Bedeutung gewonnen. Trotzdem fehlt es bis heute an anerkannten Methoden für eine objektive und umfassende Leistungsbewertung der Systeme, um mit vertretbarem Aufwand geeignete Kenngrößen für die OIS-Klassifikationsleistung im realen Produktionsbetrieb zu ermitteln. Dieser Beitrag widmet sich der Problematik der Abschätzung des Recalls bei unbekannter „Grundwahrheit“ (ground truth), als zentrales Maß für die Fähigkeitsbewertung klassifizierender Bildverarbeitungssysteme (BV-Systeme). Es werden eine Methodik für die Recall-Schätzung mittels Hilfsklassifikator vorgestellt und Forschungsbedarfe für deren praktische Umsetzung erörtert.","PeriodicalId":56086,"journal":{"name":"Tm-Technisches Messen","volume":"26 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tm-Technisches Messen","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/teme-2023-0035","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Zusammenfassung In der modernen Stahlproduktion sind automatische Oberflächeninspektionssysteme (OIS) zur Detektion und Klassifikation von Oberflächenfehlern weit verbreitet und ihre Ergebnisse haben stark an Bedeutung gewonnen. Trotzdem fehlt es bis heute an anerkannten Methoden für eine objektive und umfassende Leistungsbewertung der Systeme, um mit vertretbarem Aufwand geeignete Kenngrößen für die OIS-Klassifikationsleistung im realen Produktionsbetrieb zu ermitteln. Dieser Beitrag widmet sich der Problematik der Abschätzung des Recalls bei unbekannter „Grundwahrheit“ (ground truth), als zentrales Maß für die Fähigkeitsbewertung klassifizierender Bildverarbeitungssysteme (BV-Systeme). Es werden eine Methodik für die Recall-Schätzung mittels Hilfsklassifikator vorgestellt und Forschungsbedarfe für deren praktische Umsetzung erörtert.
期刊介绍:
The journal promotes dialogue between the developers of application-oriented sensors, measurement systems, and measurement methods and the manufacturers and measurement technologists who use them.
Topics
The manufacture and characteristics of new sensors for measurement technology in the industrial sector
New measurement methods
Hardware and software based processing and analysis of measurement signals to obtain measurement values
The outcomes of employing new measurement systems and methods.