Prediction of Stroke Disease with Demographic and Behavioural Data Using Random Forest Algorithm

O. Shobayo, Oluwafemi Zachariah, M. Odusami, Bayode Ogunleye
{"title":"Prediction of Stroke Disease with Demographic and Behavioural Data Using Random Forest Algorithm","authors":"O. Shobayo, Oluwafemi Zachariah, M. Odusami, Bayode Ogunleye","doi":"10.3390/analytics2030034","DOIUrl":null,"url":null,"abstract":"Stroke is a major cause of death worldwide, resulting from a blockage in the flow of blood to different parts of the brain. Many studies have proposed a stroke disease prediction model using medical features applied to deep learning (DL) algorithms to reduce its occurrence. However, these studies pay less attention to the predictors (both demographic and behavioural). Our study considers interpretability, robustness, and generalisation as key themes for deploying algorithms in the medical domain. Based on this background, we propose the use of random forest for stroke incidence prediction. Results from our experiment showed that random forest (RF) outperformed decision tree (DT) and logistic regression (LR) with a macro F1 score of 94%. Our findings indicated age and body mass index (BMI) as the most significant predictors of stroke disease incidence.","PeriodicalId":93078,"journal":{"name":"Big data analytics","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big data analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/analytics2030034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Stroke is a major cause of death worldwide, resulting from a blockage in the flow of blood to different parts of the brain. Many studies have proposed a stroke disease prediction model using medical features applied to deep learning (DL) algorithms to reduce its occurrence. However, these studies pay less attention to the predictors (both demographic and behavioural). Our study considers interpretability, robustness, and generalisation as key themes for deploying algorithms in the medical domain. Based on this background, we propose the use of random forest for stroke incidence prediction. Results from our experiment showed that random forest (RF) outperformed decision tree (DT) and logistic regression (LR) with a macro F1 score of 94%. Our findings indicated age and body mass index (BMI) as the most significant predictors of stroke disease incidence.
基于随机森林算法的人口统计学和行为学数据预测中风疾病
中风是世界范围内导致死亡的主要原因之一,其原因是大脑不同部位的血液流动受阻。许多研究提出了将医学特征应用于深度学习(DL)算法的中风疾病预测模型,以减少其发生。然而,这些研究很少关注预测因素(人口统计学和行为学)。我们的研究将可解释性、鲁棒性和泛化作为在医学领域部署算法的关键主题。在此背景下,我们提出使用随机森林进行脑卒中发病率预测。我们的实验结果表明,随机森林(RF)优于决策树(DT)和逻辑回归(LR),其宏观F1得分为94%。我们的研究结果表明,年龄和身体质量指数(BMI)是中风发病率最重要的预测因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信