Branched coverings of the 2-sphere

Arcelino Bruno Lobato do Nascimento
{"title":"Branched coverings of the 2-sphere","authors":"Arcelino Bruno Lobato do Nascimento","doi":"10.11606/T.45.2021.TDE-11052021-020459","DOIUrl":null,"url":null,"abstract":"Thurston obtained a combinatorial characterization for generic branched self-coverings that preserve the orientation of the oriented 2-sphere by associating a planar graph to them [arXiv:1502.04760]. In this work, the Thurston result is generalized to any branched covering of the oriented 2-sphere. To achieve that the notion of local balance introduced by Thurston is generalized. As an application, a new proof for a Theorem of Eremenko-Gabrielov-Mukhin-Tarasov-Varchenko [MR1888795], [MR2552110] is obtained. This theorem corresponded to a special case of the B. \\& M. Shapiro conjecture. In this case, it refers to generic rational functions stating that a generic rational function $ R : \\mathbb{C}\\mathbb{P}^1 \\rightarrow \\mathbb{C}\\mathbb{P}^1$ with only real critical points can be transformed by post-composition with an automorphism of $\\mathbb{C}\\mathbb{P}^1$ into a quotient of polynomials with real coefficients. Operations against balanced graphs are introduced.","PeriodicalId":8454,"journal":{"name":"arXiv: Geometric Topology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Geometric Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11606/T.45.2021.TDE-11052021-020459","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Thurston obtained a combinatorial characterization for generic branched self-coverings that preserve the orientation of the oriented 2-sphere by associating a planar graph to them [arXiv:1502.04760]. In this work, the Thurston result is generalized to any branched covering of the oriented 2-sphere. To achieve that the notion of local balance introduced by Thurston is generalized. As an application, a new proof for a Theorem of Eremenko-Gabrielov-Mukhin-Tarasov-Varchenko [MR1888795], [MR2552110] is obtained. This theorem corresponded to a special case of the B. \& M. Shapiro conjecture. In this case, it refers to generic rational functions stating that a generic rational function $ R : \mathbb{C}\mathbb{P}^1 \rightarrow \mathbb{C}\mathbb{P}^1$ with only real critical points can be transformed by post-composition with an automorphism of $\mathbb{C}\mathbb{P}^1$ into a quotient of polynomials with real coefficients. Operations against balanced graphs are introduced.
2球的分支覆盖
Thurston通过关联一个平面图形,得到了一类分支自覆盖的组合表征,这些分支自覆盖保留了定向2球的方向[j];本文将Thurston结果推广到有向2球的任何分支覆盖。为达到这一目的,对Thurston引入的局部平衡概念进行了推广。作为应用,得到了Eremenko-Gabrielov-Mukhin-Tarasov-Varchenko定理[MR1888795], [MR2552110]的一个新的证明。这个定理对应于夏皮罗猜想的一个特例。在这种情况下,它指的是泛型有理函数,说明只有实临界点的泛型有理函数$ R: \mathbb{C}\mathbb{P}^1 \右行\mathbb{C}\mathbb{P}^1$可以通过与$\mathbb{C}\mathbb{P}^1$的自同构的后复合变换成具有实系数的多项式商。介绍了对平衡图的运算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信