N. Lilansa, M. Rizal, P. Anggraeni, Nur Jamiludin Ramadhan
{"title":"Implementation consensus algorithm and leader-follower of multi-robot system formation","authors":"N. Lilansa, M. Rizal, P. Anggraeni, Nur Jamiludin Ramadhan","doi":"10.22441/sinergi. 2023.1.006","DOIUrl":null,"url":null,"abstract":"Robot technology has recently been applied to many applications to help human activities. Mobile Robot is one of the most flexible robot technology. This research uses a mobile robot designed using an omnidirectional wheel for the movement mechanism. Coordination and control of multi-robots can be assigned to perform any task from a different kind of field. Therefore, this paper aims to develop a multi-robot system to form a formation to do the task. The multi-robot system consists of three units Mobile Robot. The formation system will be built based on a coordinate point determined by a consensus point. The leader-follower topology is used to determine the orientation of the robot. ROS (Robot Operating System) is used as middleware to create a multi-robot system. The Open Base package in Gazebo Simulator is also used to simulate the movement of the multi-robot. From three test scenarios, this research results show that all the robots can do and follow the tasks simulated in the Gazebo with an average accuracy of 88.14%. Furthermore, no feedback from the robot to the Gazebo Simulator affects the robot's accuracy average below 90%. ","PeriodicalId":31051,"journal":{"name":"Jurnal Ilmiah SINERGI","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah SINERGI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22441/sinergi. 2023.1.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Robot technology has recently been applied to many applications to help human activities. Mobile Robot is one of the most flexible robot technology. This research uses a mobile robot designed using an omnidirectional wheel for the movement mechanism. Coordination and control of multi-robots can be assigned to perform any task from a different kind of field. Therefore, this paper aims to develop a multi-robot system to form a formation to do the task. The multi-robot system consists of three units Mobile Robot. The formation system will be built based on a coordinate point determined by a consensus point. The leader-follower topology is used to determine the orientation of the robot. ROS (Robot Operating System) is used as middleware to create a multi-robot system. The Open Base package in Gazebo Simulator is also used to simulate the movement of the multi-robot. From three test scenarios, this research results show that all the robots can do and follow the tasks simulated in the Gazebo with an average accuracy of 88.14%. Furthermore, no feedback from the robot to the Gazebo Simulator affects the robot's accuracy average below 90%.