A Heterogeneous PIM Hardware-Software Co-Design for Energy-Efficient Graph Processing

Yu Huang, Long Zheng, Pengcheng Yao, Jieshan Zhao, Xiaofei Liao, Hai Jin, Jingling Xue
{"title":"A Heterogeneous PIM Hardware-Software Co-Design for Energy-Efficient Graph Processing","authors":"Yu Huang, Long Zheng, Pengcheng Yao, Jieshan Zhao, Xiaofei Liao, Hai Jin, Jingling Xue","doi":"10.1109/IPDPS47924.2020.00076","DOIUrl":null,"url":null,"abstract":"Processing-In-Memory (PIM) is an emerging technology that addresses the memory bottleneck of graph processing. In general, analog memristor-based PIM promises high parallelism provided that the underlying matrix-structured crossbar can be fully utilized while digital CMOS-based PIM has a faster single-edge execution but its parallelism can be low. In this paper, we observe that there is no absolute winner between these two representative PIM technologies for graph applications, which often exhibit irregular workloads. To reap the best of both worlds, we introduce a new heterogeneous PIM hardware, called Hetraph, to facilitate energy-efficient graph processing. Hetraph incorporates memristor-based analog computation units (for high-parallelism computing) and CMOS-based digital computation cores (for efficient computing) on the same logic layer of a 3D die-stacked memory device. To maximize the hardware utilization, our software design offers a hardware heterogeneity-aware execution model and a workload offloading mechanism. For performance speedups, such a hardware-software co-design outperforms the state-of-the-art by 7.54 ×(CPU), 1.56 ×(GPU), 4.13× (memristor-based PIM) and 3.05× (CMOS-based PIM), on average. For energy savings, Hetraph reduces the energy consumption by 57.58× (CPU), 19.93× (GPU), 14.02 ×(memristor-based PIM) and 10.48 ×(CMOS-based PIM), on average.","PeriodicalId":6805,"journal":{"name":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"42 1","pages":"684-695"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS47924.2020.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

Processing-In-Memory (PIM) is an emerging technology that addresses the memory bottleneck of graph processing. In general, analog memristor-based PIM promises high parallelism provided that the underlying matrix-structured crossbar can be fully utilized while digital CMOS-based PIM has a faster single-edge execution but its parallelism can be low. In this paper, we observe that there is no absolute winner between these two representative PIM technologies for graph applications, which often exhibit irregular workloads. To reap the best of both worlds, we introduce a new heterogeneous PIM hardware, called Hetraph, to facilitate energy-efficient graph processing. Hetraph incorporates memristor-based analog computation units (for high-parallelism computing) and CMOS-based digital computation cores (for efficient computing) on the same logic layer of a 3D die-stacked memory device. To maximize the hardware utilization, our software design offers a hardware heterogeneity-aware execution model and a workload offloading mechanism. For performance speedups, such a hardware-software co-design outperforms the state-of-the-art by 7.54 ×(CPU), 1.56 ×(GPU), 4.13× (memristor-based PIM) and 3.05× (CMOS-based PIM), on average. For energy savings, Hetraph reduces the energy consumption by 57.58× (CPU), 19.93× (GPU), 14.02 ×(memristor-based PIM) and 10.48 ×(CMOS-based PIM), on average.
面向节能图形处理的异构PIM软硬件协同设计
内存中处理(PIM)是解决图形处理内存瓶颈的新兴技术。一般来说,基于模拟忆阻器的PIM在充分利用底层矩阵结构交叉杆的情况下具有较高的并行性,而基于数字cmos的PIM具有更快的单边执行速度,但其并行性可能较低。在本文中,我们观察到这两种典型的图形应用程序PIM技术之间没有绝对的赢家,因为图形应用程序经常表现出不规则的工作负载。为了获得两者的最佳效果,我们引入了一种新的异构PIM硬件,称为Hetraph,以促进节能的图形处理。Hetraph将基于忆阻器的模拟计算单元(用于高并行计算)和基于cmos的数字计算核心(用于高效计算)集成在3D模堆叠存储器件的同一逻辑层上。为了最大限度地提高硬件利用率,我们的软件设计提供了硬件异构感知执行模型和工作负载卸载机制。对于性能加速,这样的硬件软件协同设计平均比最先进的技术高出7.54倍(CPU), 1.56倍(GPU), 4.13倍(基于忆阻器的PIM)和3.05倍(基于cmos的PIM)。在节能方面,Hetraph平均降低了57.58× (CPU)、19.93× (GPU)、14.02 ×(基于忆阻器的PIM)和10.48 ×(基于cmos的PIM)的能耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信