Workload-Based Clustering of Coherent Feature Sets in Microservice Architectures

S. Klock, J. V. D. Werf, J. Guelen, S. Jansen
{"title":"Workload-Based Clustering of Coherent Feature Sets in Microservice Architectures","authors":"S. Klock, J. V. D. Werf, J. Guelen, S. Jansen","doi":"10.1109/ICSA.2017.38","DOIUrl":null,"url":null,"abstract":"In a microservice architecture, each service is designed to be independent of other microservices. The size of a microservice, defined by the features it provides, directly impacts its performance and availability. However, none of the currently available approaches take this into account. This paper proposes an approach to improve the performance of a microservice architecture by workload-based feature clustering. Given a feature model, the current microservice architecture, and the workload, this approach recommends a deployment that improves the performance for the given workload using a genetic algorithm. We created MicADO, an open-source tool, in which we implemented this approach, and applied it in a case study on an ERP system. For different workloads, the resulting generated microservice architectures show substantial improvements, which sets the potential of the approach.","PeriodicalId":6599,"journal":{"name":"2017 IEEE International Conference on Software Architecture (ICSA)","volume":"48 1","pages":"11-20"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"46","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Software Architecture (ICSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSA.2017.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 46

Abstract

In a microservice architecture, each service is designed to be independent of other microservices. The size of a microservice, defined by the features it provides, directly impacts its performance and availability. However, none of the currently available approaches take this into account. This paper proposes an approach to improve the performance of a microservice architecture by workload-based feature clustering. Given a feature model, the current microservice architecture, and the workload, this approach recommends a deployment that improves the performance for the given workload using a genetic algorithm. We created MicADO, an open-source tool, in which we implemented this approach, and applied it in a case study on an ERP system. For different workloads, the resulting generated microservice architectures show substantial improvements, which sets the potential of the approach.
微服务架构中基于工作负载的一致性特征集聚类
在微服务架构中,每个服务都被设计为独立于其他微服务。微服务的大小(由其提供的特性定义)直接影响其性能和可用性。然而,目前可用的方法都没有考虑到这一点。本文提出了一种基于工作负载的特征聚类来提高微服务架构性能的方法。给定一个特性模型、当前的微服务架构和工作负载,该方法建议使用遗传算法来改进给定工作负载的性能。我们创建了MicADO,这是一个开源工具,我们在其中实现了这种方法,并将其应用于ERP系统的案例研究中。对于不同的工作负载,生成的微服务体系结构显示出了实质性的改进,这为该方法的潜力奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信