{"title":"Mixed-mode capillary electrochromatographic separation of anionic analytes","authors":"E. Hilder, M. Macka, P. Haddad","doi":"10.1039/A904506F","DOIUrl":null,"url":null,"abstract":"In this work, mixed-mode capillary electrochromatography is introduced as a method for selectivity manipulation in the separation of charged analytes and is investigated for a number of analytes. This concept involves utilising a component of the eluent to permit the chromatographic and capillary electrophoresis (CE) separation mechanisms to contribute in varying proportions to the separation. This approach was first investigated using a combination of CE with reversed-phase liquid chromatography (RP-LC) for hydrophobic, charged analytes (aliphatic sulfonates), and using the concentration of organic modifier in the eluent to control the contributions of CE and RP-LC. However, the use of reversed-phase columns was found to be problematic for mobile phases with less then 50% organic modifier due to the hydrophobicity of the stationary phase causing the column bed to overheat and dry, and low electroosmotic flow (EOF) values (µ ⩽ 17.8 × 10–9 m2 V–1 s–1) caused additional restrictions. In a second case, ion-exchange stationary phases were used, with the type and concentration of a competing anion in the eluent being used to control the contributions of ion chromatography (IC) and CE to the separation. Nine common inorganic anions were separated using a silica based anion-exchange column and phosphate (pH 7.20) or sulfate (pH 8.2) as eluent with direct UV detection at 214 nm and 17 inorganic and small organic anions were separated using a nitrate eluent (pH 6.80) with indirect UV detection at 214 nm. The separation selectivity was shown to be a combination of IC and CE.","PeriodicalId":7814,"journal":{"name":"Analytical Communications","volume":"1 1","pages":"299-303"},"PeriodicalIF":0.0000,"publicationDate":"1999-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A904506F","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32
Abstract
In this work, mixed-mode capillary electrochromatography is introduced as a method for selectivity manipulation in the separation of charged analytes and is investigated for a number of analytes. This concept involves utilising a component of the eluent to permit the chromatographic and capillary electrophoresis (CE) separation mechanisms to contribute in varying proportions to the separation. This approach was first investigated using a combination of CE with reversed-phase liquid chromatography (RP-LC) for hydrophobic, charged analytes (aliphatic sulfonates), and using the concentration of organic modifier in the eluent to control the contributions of CE and RP-LC. However, the use of reversed-phase columns was found to be problematic for mobile phases with less then 50% organic modifier due to the hydrophobicity of the stationary phase causing the column bed to overheat and dry, and low electroosmotic flow (EOF) values (µ ⩽ 17.8 × 10–9 m2 V–1 s–1) caused additional restrictions. In a second case, ion-exchange stationary phases were used, with the type and concentration of a competing anion in the eluent being used to control the contributions of ion chromatography (IC) and CE to the separation. Nine common inorganic anions were separated using a silica based anion-exchange column and phosphate (pH 7.20) or sulfate (pH 8.2) as eluent with direct UV detection at 214 nm and 17 inorganic and small organic anions were separated using a nitrate eluent (pH 6.80) with indirect UV detection at 214 nm. The separation selectivity was shown to be a combination of IC and CE.