Fabrice Matulic, Aditya Ganeshan, Hiroshi Fujiwara, Daniel Vogel
{"title":"Phonetroller: Visual Representations of Fingers for Precise Touch Input with Mobile Phones in VR","authors":"Fabrice Matulic, Aditya Ganeshan, Hiroshi Fujiwara, Daniel Vogel","doi":"10.1145/3411764.3445583","DOIUrl":null,"url":null,"abstract":"Smartphone touch screens are potentially attractive for interaction in virtual reality (VR). However, the user cannot see the phone or their hands in a fully immersive VR setting, impeding their ability for precise touch input. We propose mounting a mirror above the phone screen such that the front-facing camera captures the thumbs on or near the screen. This enables the creation of semi-transparent overlays of thumb shadows and inference of fingertip hover points with deep learning, which help the user aim for targets on the phone. A study compares the effect of visual feedback on touch precision in a controlled task and qualitatively evaluates three example applications demonstrating the potential of the technique. The results show that the enabled style of feedback is effective for thumb-size targets, and that the VR experience can be enriched by using smartphones as VR controllers supporting precise touch input.","PeriodicalId":20451,"journal":{"name":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","volume":"2011 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411764.3445583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17
Abstract
Smartphone touch screens are potentially attractive for interaction in virtual reality (VR). However, the user cannot see the phone or their hands in a fully immersive VR setting, impeding their ability for precise touch input. We propose mounting a mirror above the phone screen such that the front-facing camera captures the thumbs on or near the screen. This enables the creation of semi-transparent overlays of thumb shadows and inference of fingertip hover points with deep learning, which help the user aim for targets on the phone. A study compares the effect of visual feedback on touch precision in a controlled task and qualitatively evaluates three example applications demonstrating the potential of the technique. The results show that the enabled style of feedback is effective for thumb-size targets, and that the VR experience can be enriched by using smartphones as VR controllers supporting precise touch input.