Internet Traffic Classification Using Machine Learning

M. Singh, Gargi Srivastava, Prabhat Kumar
{"title":"Internet Traffic Classification Using Machine Learning","authors":"M. Singh, Gargi Srivastava, Prabhat Kumar","doi":"10.14257/IJDTA.2016.9.12.05","DOIUrl":null,"url":null,"abstract":"Internet traffic classification is one of the popular research interest area because of its benefits for many applications like intrusion detection system, congestion avoidance, traffic prediction etc. Internet traffic is classified on the basis of statistical features because port and payload based techniques have their limitations. For statistics based techniques machine learning is used. The statistical feature set is large. Hence, it is a challenge to reduce the large feature set to an optimal feature set. This will reduce the time complexity of the machine learning algorithm. This paper tries to obtain an optimal feature set by using a hybrid approach -An unsupervised clustering algorithm (K-Means) with a supervised feature selection algorithm (Best Feature Selection).","PeriodicalId":13926,"journal":{"name":"International journal of database theory and application","volume":"39 1","pages":"45-54"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of database theory and application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14257/IJDTA.2016.9.12.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Internet traffic classification is one of the popular research interest area because of its benefits for many applications like intrusion detection system, congestion avoidance, traffic prediction etc. Internet traffic is classified on the basis of statistical features because port and payload based techniques have their limitations. For statistics based techniques machine learning is used. The statistical feature set is large. Hence, it is a challenge to reduce the large feature set to an optimal feature set. This will reduce the time complexity of the machine learning algorithm. This paper tries to obtain an optimal feature set by using a hybrid approach -An unsupervised clustering algorithm (K-Means) with a supervised feature selection algorithm (Best Feature Selection).
使用机器学习的互联网流量分类
网络流量分类在入侵检测系统、拥塞避免、流量预测等方面具有重要的应用价值,是当前网络流量分类研究的热点之一。由于基于端口和负载的技术有其局限性,因此Internet流量是基于统计特征进行分类的。对于基于统计的技术,使用机器学习。统计特征集很大。因此,如何将庞大的特征集缩减为最优特征集是一个挑战。这将降低机器学习算法的时间复杂度。本文尝试使用一种混合方法-无监督聚类算法(K-Means)和监督特征选择算法(Best feature selection)来获得最优特征集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信