High‐Pressure Transformations and Stability of Ferromagnesite in the Earth's Mantle

E. Boulard, F. Guyot, G. Fiquet
{"title":"High‐Pressure Transformations and Stability of Ferromagnesite in the Earth's Mantle","authors":"E. Boulard, F. Guyot, G. Fiquet","doi":"10.1002/9781119508229.ch11","DOIUrl":null,"url":null,"abstract":"Ferromagnesite (Mg,Fe)CO3 plays a key role in the transport and storage of carbon in the deep Earth. Experimental and theoretical studies demonstrated its high stability at high pressure and temperature against melting or decomposition. Several pressure-induced transformations of ferromagnesite have been reported at conditions corresponding to depths greater than ~1100 km in the Earth’s lower mantle. Although there is still no consensus on their exact crystallographic structures, evidences are strong of a change in carbon environment from the low-pressure planar CO32ion into carbon atoms tetrahedrally coordinated by four oxygens. High-pressure iron-bearing phases concentrate a large amount of Fe3+ as a result of intracrystalline self-redox reactions. These crystallographic particularities may have significant implications on carbon reservoirs and fluxes in the deep Earth.","PeriodicalId":12504,"journal":{"name":"Geophysical Monograph Series","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Monograph Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/9781119508229.ch11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Ferromagnesite (Mg,Fe)CO3 plays a key role in the transport and storage of carbon in the deep Earth. Experimental and theoretical studies demonstrated its high stability at high pressure and temperature against melting or decomposition. Several pressure-induced transformations of ferromagnesite have been reported at conditions corresponding to depths greater than ~1100 km in the Earth’s lower mantle. Although there is still no consensus on their exact crystallographic structures, evidences are strong of a change in carbon environment from the low-pressure planar CO32ion into carbon atoms tetrahedrally coordinated by four oxygens. High-pressure iron-bearing phases concentrate a large amount of Fe3+ as a result of intracrystalline self-redox reactions. These crystallographic particularities may have significant implications on carbon reservoirs and fluxes in the deep Earth.
地幔中铁菱镁矿的高压转化和稳定性
菱镁矿(Mg,Fe)CO3在地球深部碳的运输和储存中起着关键作用。实验和理论研究表明,它在高压和高温下具有很高的稳定性,不会熔化或分解。在地球下地幔深度大于~1100 km的条件下,已经报道了几种由压力引起的铁菱镁矿转变。虽然它们的确切晶体结构仍未达成共识,但有力的证据表明,碳环境从低压平面co32离子转变为由四个氧配位的四面体碳原子。高压含铁相通过晶内自氧化还原反应富集了大量Fe3+。这些晶体学的特殊性可能对地球深处的碳储层和通量具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信