M. Hendri, Rozirwan Rozirwan, R. Apri, Yulifa Handayani
{"title":"Intensification of Seaweed Cultivation Euchema cottonii with Verticulture Method in the Water of Kelagian Island, Lampung Bay","authors":"M. Hendri, Rozirwan Rozirwan, R. Apri, Yulifa Handayani","doi":"10.5376/IJMS.2018.08.0014","DOIUrl":null,"url":null,"abstract":"E.cottonii production is not still optimal and there are opportunities to increase production by developing methods that to utilize the depth level as a growing medium. Method of verticulture cultivation with pocket nets, more innovative and have high production level. This study aimed to solve the problems in seaweed cultivation by optimizing the land. Design of vertical cultivation model E.cottonii in Kelagian Island using bamboo raft and made up by 15 points on each of the 10 depth levels (BRL); 0, 70, 140, 210, 280, 350, 420, 490, 560 and 630 cm from the surface. Environmental parameters and seaweed are measured weekly. This study measures daily, weekly, absolute growth and total production. Data were analyzed by cruciate-wallis test. The results showed that the physico-chemical parameters of the waters were suitable for the cultivation of E.cottonii , except for the nitrate contents and current which were below the optimum value. The largest average weekly growth showed on the BRL 1 with 118.08 g and the smallest on BRL 10 with 107.41 g. The absolute greatest growth rate showed on the BRL 1 weighs 145.33 g and the lowest on BRL 10 with 130.67 g. The highest daily growth on BRL 1 with 1.59% / day and the lowest at BRL 10 with 1.33% / day. The total of E.cottonii production cultivated showed BRL 1 - BRL 10 of 20744 g (20.744 kg), the highest total production at BRL 1 with 2180 g and the lowest BRL 10 by 1960 g. The kruskall-wallis analysis were showed about 21.837 (H count ) and 23,685 (H table ), where it’s not influence of depth level (BRL) for seaweed grown.","PeriodicalId":22529,"journal":{"name":"The international journal of marine science","volume":"45 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The international journal of marine science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5376/IJMS.2018.08.0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
E.cottonii production is not still optimal and there are opportunities to increase production by developing methods that to utilize the depth level as a growing medium. Method of verticulture cultivation with pocket nets, more innovative and have high production level. This study aimed to solve the problems in seaweed cultivation by optimizing the land. Design of vertical cultivation model E.cottonii in Kelagian Island using bamboo raft and made up by 15 points on each of the 10 depth levels (BRL); 0, 70, 140, 210, 280, 350, 420, 490, 560 and 630 cm from the surface. Environmental parameters and seaweed are measured weekly. This study measures daily, weekly, absolute growth and total production. Data were analyzed by cruciate-wallis test. The results showed that the physico-chemical parameters of the waters were suitable for the cultivation of E.cottonii , except for the nitrate contents and current which were below the optimum value. The largest average weekly growth showed on the BRL 1 with 118.08 g and the smallest on BRL 10 with 107.41 g. The absolute greatest growth rate showed on the BRL 1 weighs 145.33 g and the lowest on BRL 10 with 130.67 g. The highest daily growth on BRL 1 with 1.59% / day and the lowest at BRL 10 with 1.33% / day. The total of E.cottonii production cultivated showed BRL 1 - BRL 10 of 20744 g (20.744 kg), the highest total production at BRL 1 with 2180 g and the lowest BRL 10 by 1960 g. The kruskall-wallis analysis were showed about 21.837 (H count ) and 23,685 (H table ), where it’s not influence of depth level (BRL) for seaweed grown.