Klasifikasi Aktivitas Manusia Menggunakan Extreme Learning Machine dan Seleksi Fitur Information Gain

Fitra A. Bachtiar, Fajar Pradana, Issa Arwani
{"title":"Klasifikasi Aktivitas Manusia Menggunakan Extreme Learning Machine dan Seleksi Fitur Information Gain","authors":"Fitra A. Bachtiar, Fajar Pradana, Issa Arwani","doi":"10.22146/jnteti.v10i3.1451","DOIUrl":null,"url":null,"abstract":"Human activity recognition has various benefits in daily lives. However, research in this area is still facing problems that is, unobtrusive data gathering, high dimensionality features, and the algorithm used to classify human activities. Those problems could impact in the result of the developed model. This research is a preliminary study in human activity recognition. Five common human activity will be recognized that is, walking, walking upstairs, walking downstairs, sitting, and standing. The dataset used in this study consist of 1500 data rows and 561 features. Feature selection is performed prior to the modeling step. Information Gain is used as the feature selection in which percentile method is used to subset the number of features in the dataset. The features are then normalized and will classified using ELM. Number of optimal hidden neuron will be searched to yield high predictive accuracy. The results show 240 feature subsets return the higher accuracy. A number of 100 hidden neuron results in highest predictive classification of human activity recognition. The classification results yield accuracy, precision, recall, and F1-score of 0.85.","PeriodicalId":31477,"journal":{"name":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","volume":"36 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Nasional Teknik Elektro dan Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/jnteti.v10i3.1451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Human activity recognition has various benefits in daily lives. However, research in this area is still facing problems that is, unobtrusive data gathering, high dimensionality features, and the algorithm used to classify human activities. Those problems could impact in the result of the developed model. This research is a preliminary study in human activity recognition. Five common human activity will be recognized that is, walking, walking upstairs, walking downstairs, sitting, and standing. The dataset used in this study consist of 1500 data rows and 561 features. Feature selection is performed prior to the modeling step. Information Gain is used as the feature selection in which percentile method is used to subset the number of features in the dataset. The features are then normalized and will classified using ELM. Number of optimal hidden neuron will be searched to yield high predictive accuracy. The results show 240 feature subsets return the higher accuracy. A number of 100 hidden neuron results in highest predictive classification of human activity recognition. The classification results yield accuracy, precision, recall, and F1-score of 0.85.
人类活动分类使用极端学习机器和信息选择功能增益
了解人类日常生活中的活动可以带来相当大的好处。然而,关于人类活动识别的研究仍然面临着几个问题——未经授权的数据检索、建模中使用的许多功能以及用于识别人类活动的建模算法。这将影响所提议的算法的研究结果和分类结果。在本文中,对人类活动的早期分类进行了研究。人类活动识别是为了预测五种人类活动,即走路、上楼、下楼、坐下和站起来。所使用的数据是1500行数据和561项功能的次要数据。功能选择是先使用信息增益,然后选择态度方法。然后用榆树进行测序和分类这些数据的子集。在ELM模型中,选择的最佳神经元隐藏数量的参数可以产生高准确性值。所获得的功能选择结果是420个最佳功能子集。100种神经元的参数为人类活动的识别提供了最高的准确性。使用ELM进行建模结果的准确性、精度、召回和F1-score为0.85。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信