Toward localization in terahertz-operating energy harvesting software-defined metamaterials: context analysis

Filip Lemic, S. Abadal, J. Famaey
{"title":"Toward localization in terahertz-operating energy harvesting software-defined metamaterials: context analysis","authors":"Filip Lemic, S. Abadal, J. Famaey","doi":"10.1145/3411295.3411315","DOIUrl":null,"url":null,"abstract":"Software-defined metamaterials (SDMs) represent a novel paradigm for real-time control of metamaterials. SDMs are envisioned to enable a variety of exciting applications in the domains such as smart textiles and sensing in challenging conditions. Many of these applications envisage deformations of the SDM structure (e.g., rolling, bending, stretching). This affects the relative position of the metamaterial elements and requires their localization relative to each other. The question of how to perform such localization is, however, yet to spark in the community. We consider that the metamaterial elements are controlled wirelessly through a Terahertz (THz)-operating nanonetwork. Moreover, we consider the elements to be energy constrained, with their sole powering option being to harvest environmental energy. For such a setup, we demonstrate sub-millimeter accuracy of the two-way Time of Flight (ToF)-based localization, as well as high availability of the service (i.e., consistently more than 80% of the time), which is a result of the low energy consumed in localization. Finally, we provide the localization context for a number of relevant system parameters such as operational frequency, bandwidth, and harvesting rate.","PeriodicalId":93611,"journal":{"name":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Nanoscale Computing and Communication : Virtual Conference, September 23-25, 2020 : NanoCom 2020. ACM International Conference on Nanoscale Computing and Communication (7th : 2020 :...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3411295.3411315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Software-defined metamaterials (SDMs) represent a novel paradigm for real-time control of metamaterials. SDMs are envisioned to enable a variety of exciting applications in the domains such as smart textiles and sensing in challenging conditions. Many of these applications envisage deformations of the SDM structure (e.g., rolling, bending, stretching). This affects the relative position of the metamaterial elements and requires their localization relative to each other. The question of how to perform such localization is, however, yet to spark in the community. We consider that the metamaterial elements are controlled wirelessly through a Terahertz (THz)-operating nanonetwork. Moreover, we consider the elements to be energy constrained, with their sole powering option being to harvest environmental energy. For such a setup, we demonstrate sub-millimeter accuracy of the two-way Time of Flight (ToF)-based localization, as well as high availability of the service (i.e., consistently more than 80% of the time), which is a result of the low energy consumed in localization. Finally, we provide the localization context for a number of relevant system parameters such as operational frequency, bandwidth, and harvesting rate.
太赫兹操作能量收集软件定义的超材料的本地化:背景分析
软件定义的超材料(SDMs)代表了一种实时控制超材料的新范式。sdm被设想为在具有挑战性的条件下实现智能纺织品和传感等领域的各种令人兴奋的应用。许多这些应用设想SDM结构的变形(例如,滚动,弯曲,拉伸)。这影响了超材料元素的相对位置,并要求它们彼此相对定位。然而,如何执行这种本地化的问题还没有在社区中引发。我们认为超材料元件是通过太赫兹(THz)操作的纳米网络无线控制的。此外,我们认为这些元素是能源有限的,它们唯一的动力选择是收集环境能源。对于这样的设置,我们展示了基于双向飞行时间(ToF)的定位的亚毫米精度,以及服务的高可用性(即始终超过80%的时间),这是定位能耗低的结果。最后,我们提供了一些相关系统参数(如工作频率、带宽和收获率)的本地化上下文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信