Machine Learning Assisted Array Synthesis Under Mutual Coupling and Platform Effects

Qi Wu, Chen Yu, Haiming Wang, W. Hong
{"title":"Machine Learning Assisted Array Synthesis Under Mutual Coupling and Platform Effects","authors":"Qi Wu, Chen Yu, Haiming Wang, W. Hong","doi":"10.1109/APS/URSI47566.2021.9703780","DOIUrl":null,"url":null,"abstract":"An efficient machine learning assisted array synthesis (MLAAS) method is proposed for practical array designs under mutual coupling and platform effects. By introducing machine learning methods, the impact of the electromagnetic environment on the antenna element is learned and utilized to build surrogate models for active element patterns and S- parameters. Compared with conventional methods, the proposed MLAAS is able to achieve great prediction accuracy based on limited numbers of full-wave simulations. Moreover, the algorithm is able to deal with array design problems with variable element numbers, which is validated using a practical antenna array design task.","PeriodicalId":6801,"journal":{"name":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","volume":"2 1","pages":"1711-1712"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APS/URSI47566.2021.9703780","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient machine learning assisted array synthesis (MLAAS) method is proposed for practical array designs under mutual coupling and platform effects. By introducing machine learning methods, the impact of the electromagnetic environment on the antenna element is learned and utilized to build surrogate models for active element patterns and S- parameters. Compared with conventional methods, the proposed MLAAS is able to achieve great prediction accuracy based on limited numbers of full-wave simulations. Moreover, the algorithm is able to deal with array design problems with variable element numbers, which is validated using a practical antenna array design task.
相互耦合和平台效应下的机器学习辅助阵列合成
针对相互耦合和平台效应下的阵列设计,提出了一种高效的机器学习辅助阵列综合方法。通过引入机器学习方法,了解电磁环境对天线元件的影响,并利用电磁环境建立有源元件方向图和S-参数的替代模型。与传统方法相比,基于有限的全波模拟,所提出的MLAAS能够获得较高的预测精度。此外,该算法能够处理可变单元数的阵列设计问题,并通过实际天线阵列设计任务进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信