Zhixiang Lv, Xin Yang, Jihong Han, Yingyao Wang, Jiao Zou, Anqi Yang, Haoda Zhang, Nan He
{"title":"Adsorption Characteristics and Electrochemical Behaviors of Methyl Blue onto Magnetic MgxCoyZn(1-x-y)Fe2O4 Nanoparticles","authors":"Zhixiang Lv, Xin Yang, Jihong Han, Yingyao Wang, Jiao Zou, Anqi Yang, Haoda Zhang, Nan He","doi":"10.1155/2023/8803540","DOIUrl":null,"url":null,"abstract":"Magnetic MgxCoyZn(1-x-y)Fe2O4 nanoparticles were successfully prepared by the rapid combustion approach, and SEM, XRD, VSM, EDX, and FTIR techniques were applied for their characterization. The influence of the element ratios (Mg2+, Co2+, and Zn2+) in magnetic MgxCoyZn(1-x-y)Fe2O4 nanoparticles on their properties was explored. To acquire a larger specific surface area for better adsorption of methyl blue (MB), magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles calcined at 400°C for 2 h with 25 mL anhydrous ethanol were selected, and their average particle size and the saturation magnetization were about 81.3 nm and 13.5 emu·g-1, respectively. Adsorption kinetics models and adsorption isotherm models were applied to research the adsorption characteristics of MB onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles. The pseudo-second-order kinetics model (\n \n \n \n R\n \n \n 2\n \n \n >\n 0.99\n \n ) and Temkin isotherm model (\n \n \n \n R\n \n \n 2\n \n \n =\n 0.9887\n \n ) were the most consistent with the data, indicating that the adsorption was the chemical multilayer adsorption mechanism, and the process was an exothermic reaction. The E of the Dubinin-Radushkevich (D-R) isotherm model was 0.2347 KJ·mol-1, indicating the adsorption involved physical adsorption besides chemical adsorption. The \n \n Δ\n \n \n G\n \n \n 0\n \n \n \n and \n \n Δ\n \n \n H\n \n \n 0\n \n \n \n (\n \n Δ\n \n \n H\n \n \n 0\n \n \n =\n −\n 10.38\n \n KJ·mol-1) of the adsorption process of MB adsorbed onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles measured through the thermodynamic experiment were both less than 0, which proved that the process was a spontaneous exothermic reaction. The adsorption capacity of MB onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles increased with the pH of MB solution increasing from 2 to 4 at room temperature, and it had no significant change when the pH of MB solution was 4-12, while the relative removal rate was 98.75% of the first one after 2 cycles. The electrochemical impedance spectroscopy (EIS) and the cyclic voltammetry (CV) data further demonstrated that MB was adsorbed onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles.","PeriodicalId":7279,"journal":{"name":"Adsorption Science & Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8803540","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Magnetic MgxCoyZn(1-x-y)Fe2O4 nanoparticles were successfully prepared by the rapid combustion approach, and SEM, XRD, VSM, EDX, and FTIR techniques were applied for their characterization. The influence of the element ratios (Mg2+, Co2+, and Zn2+) in magnetic MgxCoyZn(1-x-y)Fe2O4 nanoparticles on their properties was explored. To acquire a larger specific surface area for better adsorption of methyl blue (MB), magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles calcined at 400°C for 2 h with 25 mL anhydrous ethanol were selected, and their average particle size and the saturation magnetization were about 81.3 nm and 13.5 emu·g-1, respectively. Adsorption kinetics models and adsorption isotherm models were applied to research the adsorption characteristics of MB onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles. The pseudo-second-order kinetics model (
R
2
>
0.99
) and Temkin isotherm model (
R
2
=
0.9887
) were the most consistent with the data, indicating that the adsorption was the chemical multilayer adsorption mechanism, and the process was an exothermic reaction. The E of the Dubinin-Radushkevich (D-R) isotherm model was 0.2347 KJ·mol-1, indicating the adsorption involved physical adsorption besides chemical adsorption. The
Δ
G
0
and
Δ
H
0
(
Δ
H
0
=
−
10.38
KJ·mol-1) of the adsorption process of MB adsorbed onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles measured through the thermodynamic experiment were both less than 0, which proved that the process was a spontaneous exothermic reaction. The adsorption capacity of MB onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles increased with the pH of MB solution increasing from 2 to 4 at room temperature, and it had no significant change when the pH of MB solution was 4-12, while the relative removal rate was 98.75% of the first one after 2 cycles. The electrochemical impedance spectroscopy (EIS) and the cyclic voltammetry (CV) data further demonstrated that MB was adsorbed onto magnetic Mg0.4Co0.5Zn0.1Fe2O4 nanoparticles.