{"title":"NONLOCAL FRACTIONAL DIFFERENTIAL INCLUSIONS WITH IMPULSE EFFECTS AND DELAY","authors":"N. Alsarori, K. Ghadle","doi":"10.12941/JKSIAM.2020.24.229","DOIUrl":null,"url":null,"abstract":"Functional fractional differential inclusions with impulse effects in general Banach spaces are studied. We discuss the situation when the semigroup generated by the linear part is equicontinuous and the multifunction is Caratheodory. First, we define the PC-mild solutions for functional fractional semilinear impulsive differential inclusions. We then prove the existence of PC-mild solutions for such inclusions by using the fixed point theorem, multivalued properties and applications of NCHM (noncompactness Hausdorff measure). Eventually, we enhance the acquired results by giving an example.","PeriodicalId":41717,"journal":{"name":"Journal of the Korean Society for Industrial and Applied Mathematics","volume":"40 1","pages":"229-242"},"PeriodicalIF":0.3000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korean Society for Industrial and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12941/JKSIAM.2020.24.229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Functional fractional differential inclusions with impulse effects in general Banach spaces are studied. We discuss the situation when the semigroup generated by the linear part is equicontinuous and the multifunction is Caratheodory. First, we define the PC-mild solutions for functional fractional semilinear impulsive differential inclusions. We then prove the existence of PC-mild solutions for such inclusions by using the fixed point theorem, multivalued properties and applications of NCHM (noncompactness Hausdorff measure). Eventually, we enhance the acquired results by giving an example.