Tuning Hyperparameter pada Gradient Boosting untuk Klasifikasi Soal Cerita Otomatis

Umi Laili Yuhana, Ayu Purwarianti, Imamah Imamah
{"title":"Tuning Hyperparameter pada Gradient Boosting untuk Klasifikasi Soal Cerita Otomatis","authors":"Umi Laili Yuhana, Ayu Purwarianti, Imamah Imamah","doi":"10.26418/jp.v8i1.50506","DOIUrl":null,"url":null,"abstract":"Soal adalah susunan pertanyaan yang dibuat untuk menguji keberhasilan dari pembelajaran siswa. Bagi manusia, membedakan soal penjumlahan dengan pengurangan sangat mudah, namun tidak halnya dengan mesin. Mesin  membutuhkan pembelajaran untuk mengenali soal cerita apakah termasuk penjumlahan atau pengurangan. Kebutuhan mesin untuk mengenali soal cerita biasanya diterapkan dalam pembuatan sistem E-learning. Berdasarkan dari masalah ini, maka digunakan metode gradient boosting untuk mengklasifikasikan soal cerita. Kelas target atau label dari klasifikasi terdiri dari empat kelas yaitu penjumlahan, pengurangan, perkalian, pembagian, dan campuran.  Soal cerita diambil dari buku matematika untuk kelas tiga sampai kelas enam Sekolah Dasar. Guru Sekolah Dasar (SD) melabeli soal cerita, dan dijadikan sebagai dataset untuk pembelajaran dari machine learning. Dataset kemudian di preprocessing, ekstraksi fitur dengan menggunakan TF-IDF dan selanjutnya dibagi menjadi data training dan data testing dengan menggunakan K-fold cross validation dengan nilai K[5,10,20]. Performa metode gradient boosting dalam mengklasifikasikan soal matematika diukur dengan menggunakan akurasi. Akurasi didapatkan dari hasil perbandingan dari label yang diprediksi oleh machine learning dengan label dari pakar yaitu guru SD. Berdasarkan hasil percobaan pada 500 data soal cerita, diperoleh hasil akurasi terbaik sebesar 75,8% pada saat K=20 dengan hyperparameter gradient boosting N_estimator=100, max_depth=9 dan learning rate=0,15.","PeriodicalId":31793,"journal":{"name":"JEPIN Jurnal Edukasi dan Penelitian Informatika","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JEPIN Jurnal Edukasi dan Penelitian Informatika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26418/jp.v8i1.50506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Soal adalah susunan pertanyaan yang dibuat untuk menguji keberhasilan dari pembelajaran siswa. Bagi manusia, membedakan soal penjumlahan dengan pengurangan sangat mudah, namun tidak halnya dengan mesin. Mesin  membutuhkan pembelajaran untuk mengenali soal cerita apakah termasuk penjumlahan atau pengurangan. Kebutuhan mesin untuk mengenali soal cerita biasanya diterapkan dalam pembuatan sistem E-learning. Berdasarkan dari masalah ini, maka digunakan metode gradient boosting untuk mengklasifikasikan soal cerita. Kelas target atau label dari klasifikasi terdiri dari empat kelas yaitu penjumlahan, pengurangan, perkalian, pembagian, dan campuran.  Soal cerita diambil dari buku matematika untuk kelas tiga sampai kelas enam Sekolah Dasar. Guru Sekolah Dasar (SD) melabeli soal cerita, dan dijadikan sebagai dataset untuk pembelajaran dari machine learning. Dataset kemudian di preprocessing, ekstraksi fitur dengan menggunakan TF-IDF dan selanjutnya dibagi menjadi data training dan data testing dengan menggunakan K-fold cross validation dengan nilai K[5,10,20]. Performa metode gradient boosting dalam mengklasifikasikan soal matematika diukur dengan menggunakan akurasi. Akurasi didapatkan dari hasil perbandingan dari label yang diprediksi oleh machine learning dengan label dari pakar yaitu guru SD. Berdasarkan hasil percobaan pada 500 data soal cerita, diperoleh hasil akurasi terbaik sebesar 75,8% pada saat K=20 dengan hyperparameter gradient boosting N_estimator=100, max_depth=9 dan learning rate=0,15.
自动故事分类的渐变助推器上的超参数调整
问题是为了测试学生的学习成绩而提出的一系列问题。对人类来说,区分加法和减法很容易,但在机器中却不是这样。机器需要学习来识别故事的内容,无论是加法还是减法。机器对识别故事的需求通常应用于创建电子学习系统。根据这些问题,然后用一种渐进式的激励方法来对故事进行分类。目标类或分类标签由四类组成:加法、减法、乘法、除法和混合。故事的内容来自小学三年级到六年级的数学书。小学老师给这个故事贴上标签,并作为学习机器的学习背景。然后在预习中使用TF-IDF提取功能,然后通过使用K-fold交叉验证将其分为训练数据和测试数据,评分为K[5.10.20]。对数学进行分类的渐变方法的性能是用准确性来测量的。准确性来自于机器学习预测的标签与专家小学教师的标签之间的比较。根据500个故事数据的实验结果,在K=20时获得的最高准确性为75.8%,得分高参数N_estimator=100, max_depth=9,学习速率= 0.15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
1
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信