Dynamic mutual information-based feature selection for multi-label learning

IF 0.9 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Kyung-jun Kim, C. Jun
{"title":"Dynamic mutual information-based feature selection for multi-label learning","authors":"Kyung-jun Kim, C. Jun","doi":"10.3233/ida-226666","DOIUrl":null,"url":null,"abstract":"In classification problems, feature selection is used to identify important input features to reduce the dimensionality of the input space while improving or maintaining classification performance. Traditional feature selection algorithms are designed to handle single-label learning, but classification problems have recently emerged in multi-label domain. In this study, we propose a novel feature selection algorithm for classifying multi-label data. This proposed method is based on dynamic mutual information, which can handle redundancy among features controlling the input space. We compare the proposed method with some existing problem transformation and algorithm adaptation methods applied to real multi-label datasets using the metrics of multi-label accuracy and hamming loss. The results show that the proposed method demonstrates more stable and better performance for nearly all multi-label datasets.","PeriodicalId":50355,"journal":{"name":"Intelligent Data Analysis","volume":"153 1","pages":"891-909"},"PeriodicalIF":0.9000,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Data Analysis","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ida-226666","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1

Abstract

In classification problems, feature selection is used to identify important input features to reduce the dimensionality of the input space while improving or maintaining classification performance. Traditional feature selection algorithms are designed to handle single-label learning, but classification problems have recently emerged in multi-label domain. In this study, we propose a novel feature selection algorithm for classifying multi-label data. This proposed method is based on dynamic mutual information, which can handle redundancy among features controlling the input space. We compare the proposed method with some existing problem transformation and algorithm adaptation methods applied to real multi-label datasets using the metrics of multi-label accuracy and hamming loss. The results show that the proposed method demonstrates more stable and better performance for nearly all multi-label datasets.
基于互信息的多标签学习动态特征选择
在分类问题中,特征选择用于识别重要的输入特征,以降低输入空间的维数,同时提高或保持分类性能。传统的特征选择算法是为处理单标签学习而设计的,但近年来出现了多标签领域的分类问题。在本研究中,我们提出了一种新的多标签数据分类特征选择算法。该方法基于动态互信息,可以处理控制输入空间的特征之间的冗余。以多标签精度和汉明损失为度量指标,将本文提出的方法与目前应用于实际多标签数据集的问题变换和算法自适应方法进行了比较。结果表明,该方法在几乎所有的多标签数据集上都表现出更稳定和更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Intelligent Data Analysis
Intelligent Data Analysis 工程技术-计算机:人工智能
CiteScore
2.20
自引率
5.90%
发文量
85
审稿时长
3.3 months
期刊介绍: Intelligent Data Analysis provides a forum for the examination of issues related to the research and applications of Artificial Intelligence techniques in data analysis across a variety of disciplines. These techniques include (but are not limited to): all areas of data visualization, data pre-processing (fusion, editing, transformation, filtering, sampling), data engineering, database mining techniques, tools and applications, use of domain knowledge in data analysis, big data applications, evolutionary algorithms, machine learning, neural nets, fuzzy logic, statistical pattern recognition, knowledge filtering, and post-processing. In particular, papers are preferred that discuss development of new AI related data analysis architectures, methodologies, and techniques and their applications to various domains.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信