Theoretical Study of Some Angle Parameter Trigonometric Copulas

C. Chesneau
{"title":"Theoretical Study of Some Angle Parameter Trigonometric Copulas","authors":"C. Chesneau","doi":"10.3390/modelling3010010","DOIUrl":null,"url":null,"abstract":"Copulas are important probabilistic tools to model and interpret the correlations of measures involved in real or experimental phenomena. The versatility of these phenomena implies the need for diverse copulas. In this article, we describe and investigate theoretically new two-dimensional copulas based on trigonometric functions modulated by a tuning angle parameter. The independence copula is, thus, extended in an original manner. Conceptually, the proposed trigonometric copulas are ideal for modeling correlations into periodic, circular, or seasonal phenomena. We examine their qualities, such as various symmetry properties, quadrant dependence properties, possible Archimedean nature, copula ordering, tail dependences, diverse correlations (medial, Spearman, and Kendall), and two-dimensional distribution generation. The proposed copulas are fleshed out in terms of data generation and inference. The theoretical findings are supplemented by some graphical and numerical work. The main results are proved using two-dimensional inequality techniques that can be used for other copula purposes.","PeriodicalId":89310,"journal":{"name":"WIT transactions on modelling and simulation","volume":"2013 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIT transactions on modelling and simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/modelling3010010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Copulas are important probabilistic tools to model and interpret the correlations of measures involved in real or experimental phenomena. The versatility of these phenomena implies the need for diverse copulas. In this article, we describe and investigate theoretically new two-dimensional copulas based on trigonometric functions modulated by a tuning angle parameter. The independence copula is, thus, extended in an original manner. Conceptually, the proposed trigonometric copulas are ideal for modeling correlations into periodic, circular, or seasonal phenomena. We examine their qualities, such as various symmetry properties, quadrant dependence properties, possible Archimedean nature, copula ordering, tail dependences, diverse correlations (medial, Spearman, and Kendall), and two-dimensional distribution generation. The proposed copulas are fleshed out in terms of data generation and inference. The theoretical findings are supplemented by some graphical and numerical work. The main results are proved using two-dimensional inequality techniques that can be used for other copula purposes.
一些角参数三角关系式的理论研究
copula是重要的概率工具,用于模拟和解释实际或实验现象中涉及的度量的相关性。这些现象的多功能性意味着需要多种copula。在本文中,我们从理论上描述和研究了一种新的基于三角函数的二维copula,该copula是由一个可调角参数调制的。因此,独立性联结以一种原始的方式得到了扩展。从概念上讲,所提出的三角关系式是为周期性、圆形或季节性现象建模的理想方法。我们研究了它们的性质,如各种对称性质、象限依赖性质、可能的阿基米德性质、copula有序、尾部依赖、多种相关性(medial、Spearman和Kendall)和二维分布生成。在数据生成和推理方面充实了所提出的联结。理论发现得到了一些图形和数值工作的补充。使用二维不等式技术证明了主要结果,该技术可用于其他联结目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信