The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time

IF 1 2区 数学 Q3 STATISTICS & PROBABILITY
Patrick Beissner, E. R. Gianin
{"title":"The term structure of sharpe ratios and arbitrage-free asset pricing in continuous time","authors":"Patrick Beissner, E. R. Gianin","doi":"10.3934/PUQR.2021002","DOIUrl":null,"url":null,"abstract":"Motivated by financial and empirical arguments and in order to introduce a more flexible methodology of pricing, we provide a new approach to asset pricing based on Backward Volterra equations. The approach relies on an arbitrage-free and incomplete market setting in continuous time by choosing non-unique pricing measures depending either on the time of evaluation or on the maturity of payoffs. We show that in the latter case the dynamics can be captured by a time-delayed backward stochastic Volterra integral equation here introduced which, to the best of our knowledge, has not yet been studied. We then prove an existence and uniqueness result for time-delayed backward stochastic Volterra integral equations. Finally, we present a Lucas-type consumption-based asset pricing model that justifies the emergence of stochastic discount factors matching the term structure of Sharpe ratios.","PeriodicalId":42330,"journal":{"name":"Probability Uncertainty and Quantitative Risk","volume":"17 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Uncertainty and Quantitative Risk","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/PUQR.2021002","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 3

Abstract

Motivated by financial and empirical arguments and in order to introduce a more flexible methodology of pricing, we provide a new approach to asset pricing based on Backward Volterra equations. The approach relies on an arbitrage-free and incomplete market setting in continuous time by choosing non-unique pricing measures depending either on the time of evaluation or on the maturity of payoffs. We show that in the latter case the dynamics can be captured by a time-delayed backward stochastic Volterra integral equation here introduced which, to the best of our knowledge, has not yet been studied. We then prove an existence and uniqueness result for time-delayed backward stochastic Volterra integral equations. Finally, we present a Lucas-type consumption-based asset pricing model that justifies the emergence of stochastic discount factors matching the term structure of Sharpe ratios.
连续时间夏普比率的期限结构与无套利资产定价
在金融和实证论证的推动下,为了引入更灵活的定价方法,我们提供了一种基于后向沃尔泰拉方程的资产定价新方法。该方法依赖于连续时间内无套利和不完全的市场设置,通过根据评估时间或支付期限选择非唯一的定价措施。我们表明,在后一种情况下,动力学可以通过本文介绍的时间延迟倒向随机Volterra积分方程来捕获,据我们所知,该方程尚未被研究过。然后证明了时滞倒向随机Volterra积分方程的存在唯一性。最后,我们提出了一个卢卡斯式的基于消费的资产定价模型,该模型证明了与夏普比率期限结构相匹配的随机贴现因子的出现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
13.30%
发文量
29
审稿时长
12 weeks
期刊介绍: Probability, Uncertainty and Quantitative Risk (PUQR) is a quarterly academic journal under the supervision of the Ministry of Education of the People's Republic of China and hosted by Shandong University, which is open to the public at home and abroad (ISSN 2095-9672; CN 37-1505/O1). Probability, Uncertainty and Quantitative Risk (PUQR) mainly reports on the major developments in modern probability theory, covering stochastic analysis and statistics, stochastic processes, dynamical analysis and control theory, and their applications in the fields of finance, economics, biology, and computer science. The journal is currently indexed in ESCI, Scopus, Mathematical Reviews, zbMATH Open and other databases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信