Characterization and Modification of Clay for Removal of Drinking Water Hardness

Asanthi Ireshika Rukshani Wickramasuriya, Ruwan Chandima Wickramasinghe Arachchige, I. Kottegoda
{"title":"Characterization and Modification of Clay for Removal of Drinking Water Hardness","authors":"Asanthi Ireshika Rukshani Wickramasuriya, Ruwan Chandima Wickramasinghe Arachchige, I. Kottegoda","doi":"10.13005/msri/180307","DOIUrl":null,"url":null,"abstract":"Hardness in drinking water is a major problem in domestic usage. It is important to use drinking water within the tolerance limits of hardness. Clay samples obtained from two different areas in Sri Lanka were analysed, modified, and optimized with a view to suppress the hardness in drinking water. Characterization of clay was carried out using XRD (X-ray diffraction spectroscopy), FTIR (Fourier transformed infrared spectroscopy), and SEM (Scanning electron microscope). Variation of the adsorption capacity of clay was analysed at different firing temperatures of the clay samples. XRD analysis revealed that both clay types are consisting of Kaolinite as the main constituent. The hardness adsorption efficiency and the retention of hardness adsorption in prolonged cycles has been observed when the clay is heated at different temperatures. In addition, the water hardness adsorption efficiency was enhanced by the cationic modification using sodium chloride. The results further reveals that the Freundlich isotherm is best fit for Ca2+ adsorption on both Biyagama and Deniyaya clay whereas that for the Mg2+ adsorption is Langmuir isotherm. The present study is useful to develop low-cost clay-based materials to minimize water hardness.","PeriodicalId":18247,"journal":{"name":"Material Science Research India","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Material Science Research India","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13005/msri/180307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Hardness in drinking water is a major problem in domestic usage. It is important to use drinking water within the tolerance limits of hardness. Clay samples obtained from two different areas in Sri Lanka were analysed, modified, and optimized with a view to suppress the hardness in drinking water. Characterization of clay was carried out using XRD (X-ray diffraction spectroscopy), FTIR (Fourier transformed infrared spectroscopy), and SEM (Scanning electron microscope). Variation of the adsorption capacity of clay was analysed at different firing temperatures of the clay samples. XRD analysis revealed that both clay types are consisting of Kaolinite as the main constituent. The hardness adsorption efficiency and the retention of hardness adsorption in prolonged cycles has been observed when the clay is heated at different temperatures. In addition, the water hardness adsorption efficiency was enhanced by the cationic modification using sodium chloride. The results further reveals that the Freundlich isotherm is best fit for Ca2+ adsorption on both Biyagama and Deniyaya clay whereas that for the Mg2+ adsorption is Langmuir isotherm. The present study is useful to develop low-cost clay-based materials to minimize water hardness.
去除饮用水硬度粘土的表征及改性研究
饮用水的硬度是家庭用水中的一个主要问题。在硬度容许范围内使用饮用水是很重要的。从斯里兰卡两个不同地区获得的粘土样品进行了分析、修改和优化,以期抑制饮用水中的硬度。采用XRD (x射线衍射光谱)、FTIR(傅里叶变换红外光谱)和SEM(扫描电镜)对粘土进行了表征。分析了粘土试样在不同烧成温度下吸附量的变化。XRD分析表明,两种粘土类型均以高岭石为主要成分。在不同温度下加热,观察了黏土的硬度吸附效率和硬度吸附在长周期内的保留情况。另外,采用氯化钠进行阳离子改性,提高了水硬度的吸附效率。结果进一步表明,Freundlich等温线最适合于Biyagama和Deniyaya粘土对Ca2+的吸附,而Langmuir等温线最适合于Mg2+的吸附。本研究有助于开发低成本的粘土基材料,以降低水的硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信