SIMILARITY BETWEEN RANDOM SETS CONSISTING OF MANY COMPONENTS

IF 0.8 4区 计算机科学 Q4 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY
Vesna Gotovac
{"title":"SIMILARITY BETWEEN RANDOM SETS CONSISTING OF MANY COMPONENTS","authors":"Vesna Gotovac","doi":"10.5566/IAS.2017","DOIUrl":null,"url":null,"abstract":"Random sets play an essential role in modelling several phenomena in biology, medicine and material science. However, sometimes it is hard to describe them using a specific model. Therefore it can also be difficult to classify them or to compare their realisations. This contribution proposes a similarity measure between two random sets whose realisations consist of many components based on just one realisation of each of them. The similarity measure is obtained in a non-parametric way taking into account the shapes and the positions of the components. The procedure is justified by a simulation study and consequently applied to real biomedical data of histological images of mammary tissue.","PeriodicalId":49062,"journal":{"name":"Image Analysis & Stereology","volume":"44 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Image Analysis & Stereology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.5566/IAS.2017","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY","Score":null,"Total":0}
引用次数: 5

Abstract

Random sets play an essential role in modelling several phenomena in biology, medicine and material science. However, sometimes it is hard to describe them using a specific model. Therefore it can also be difficult to classify them or to compare their realisations. This contribution proposes a similarity measure between two random sets whose realisations consist of many components based on just one realisation of each of them. The similarity measure is obtained in a non-parametric way taking into account the shapes and the positions of the components. The procedure is justified by a simulation study and consequently applied to real biomedical data of histological images of mammary tissue.
由许多成分组成的随机集之间的相似性
随机集在生物学、医学和材料科学的一些现象建模中起着至关重要的作用。然而,有时很难用特定的模型来描述它们。因此,对它们进行分类或比较它们的实现也很困难。这一贡献提出了两个随机集之间的相似性度量,其实现由许多组件组成,仅基于每个组件的一个实现。考虑到部件的形状和位置,以非参数方式获得相似性度量。该程序通过模拟研究证明是正确的,并因此应用于乳腺组织组织学图像的真实生物医学数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Image Analysis & Stereology
Image Analysis & Stereology MATERIALS SCIENCE, MULTIDISCIPLINARY-MATHEMATICS, APPLIED
CiteScore
2.00
自引率
0.00%
发文量
7
审稿时长
>12 weeks
期刊介绍: Image Analysis and Stereology is the official journal of the International Society for Stereology & Image Analysis. It promotes the exchange of scientific, technical, organizational and other information on the quantitative analysis of data having a geometrical structure, including stereology, differential geometry, image analysis, image processing, mathematical morphology, stochastic geometry, statistics, pattern recognition, and related topics. The fields of application are not restricted and range from biomedicine, materials sciences and physics to geology and geography.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信