Ana M. Ferreira, A.L.L.C Leite, João A. P. Coutinho, M. Freire
{"title":"Chlorophylls Extraction from Spinach Leaves Using Aqueous Solutions of Surface-Active Ionic Liquids","authors":"Ana M. Ferreira, A.L.L.C Leite, João A. P. Coutinho, M. Freire","doi":"10.3390/suschem2040040","DOIUrl":null,"url":null,"abstract":"Chlorophylls and their derivatives have been extensively studied due to their unique and valuable properties, including their anti-mutagenic and anti-carcinogenic features. Nevertheless, high-purity-level chlorophylls extracted from natural sources are quite expensive because the methods used for their extraction have low selectivity and result in low yields. This study aimed to develop a “greener” and cost-effective technology for the extraction of chlorophylls from biomass using aqueous solutions of ionic liquids (ILs). Several aqueous solutions of ILs, with hydrotropic and surface-active effects were evaluated, demonstrating that aqueous solutions of surface-active ILs are enhanced solvents for the extraction of chlorophylls from spinach leaves. Operating conditions, such as the IL concentration and solid–liquid ratio, were optimized by a response surface methodology. Outstanding extraction yields (0.104 and 0.022 wt.% for chlorophyll a and b, respectively, obtained simultaneously) and selectivity (chlorophyll a/b ratio of 4.79) were obtained with aqueous solutions of hexadecylpyridinium chloride ([C16py]Cl) at moderate conditions of temperature and time. These extraction yields are similar to those obtained with pure ethanol. However, the chlorophyll a/b ratio achieved with the IL aqueous solution is higher than with pure ethanol (3.92), reinforcing the higher selectivity afforded by IL aqueous solutions as viable replacements to volatile organic compounds and allowing the obtainment of more pure compounds. Finally, the recovery and reuse of the solvent were evaluated by using a back-extraction step of chlorophylls using ethyl acetate. The results disclosed here bring new perspectives into the design of new approaches for the selective extraction of chlorophylls from biomass using aqueous solutions of surface-active ILs.","PeriodicalId":22103,"journal":{"name":"Sustainable Chemistry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/suschem2040040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
Chlorophylls and their derivatives have been extensively studied due to their unique and valuable properties, including their anti-mutagenic and anti-carcinogenic features. Nevertheless, high-purity-level chlorophylls extracted from natural sources are quite expensive because the methods used for their extraction have low selectivity and result in low yields. This study aimed to develop a “greener” and cost-effective technology for the extraction of chlorophylls from biomass using aqueous solutions of ionic liquids (ILs). Several aqueous solutions of ILs, with hydrotropic and surface-active effects were evaluated, demonstrating that aqueous solutions of surface-active ILs are enhanced solvents for the extraction of chlorophylls from spinach leaves. Operating conditions, such as the IL concentration and solid–liquid ratio, were optimized by a response surface methodology. Outstanding extraction yields (0.104 and 0.022 wt.% for chlorophyll a and b, respectively, obtained simultaneously) and selectivity (chlorophyll a/b ratio of 4.79) were obtained with aqueous solutions of hexadecylpyridinium chloride ([C16py]Cl) at moderate conditions of temperature and time. These extraction yields are similar to those obtained with pure ethanol. However, the chlorophyll a/b ratio achieved with the IL aqueous solution is higher than with pure ethanol (3.92), reinforcing the higher selectivity afforded by IL aqueous solutions as viable replacements to volatile organic compounds and allowing the obtainment of more pure compounds. Finally, the recovery and reuse of the solvent were evaluated by using a back-extraction step of chlorophylls using ethyl acetate. The results disclosed here bring new perspectives into the design of new approaches for the selective extraction of chlorophylls from biomass using aqueous solutions of surface-active ILs.