{"title":"Maximizing the Potential of Artificial Intelligence to Perform Evaluations in Ungauged Washbowls","authors":"Sandesh Achar","doi":"10.18034/ei.v8i2.636","DOIUrl":null,"url":null,"abstract":"Long short-term memory networks (LSTM) offer precision in the prediction that has never been seen before in ungauged basins. Using k-fold validation, we trained and evaluated several LSTMs in this study on 531 basins from the CAMELS data set. This allowed us to make predictions in basins for which we did not have any training data. The implication is that there is usually sufficient information in available catchment attributes data about similarities and differences between catchment-level rainfall-runoff behaviors to generate out-of-sample simulations that are generally more accurate than current models when operating under ideal (i.e., calibrated) conditions, i.e., when using under idealized conditions. In other words, existing models are generally less accurate when working under idealized conditions than out-of-sample simulations. We found evidence that including physical limits in LSTM models improves simulations, which we believe should be the primary focus of future research on physics-guided artificial intelligence. Putting in place additional physical constraints on the LSTM models.","PeriodicalId":49736,"journal":{"name":"Nuclear Engineering International","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Engineering International","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18034/ei.v8i2.636","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 2
Abstract
Long short-term memory networks (LSTM) offer precision in the prediction that has never been seen before in ungauged basins. Using k-fold validation, we trained and evaluated several LSTMs in this study on 531 basins from the CAMELS data set. This allowed us to make predictions in basins for which we did not have any training data. The implication is that there is usually sufficient information in available catchment attributes data about similarities and differences between catchment-level rainfall-runoff behaviors to generate out-of-sample simulations that are generally more accurate than current models when operating under ideal (i.e., calibrated) conditions, i.e., when using under idealized conditions. In other words, existing models are generally less accurate when working under idealized conditions than out-of-sample simulations. We found evidence that including physical limits in LSTM models improves simulations, which we believe should be the primary focus of future research on physics-guided artificial intelligence. Putting in place additional physical constraints on the LSTM models.